Выполнение работ под напряжением в электроустановках разных классов напряжения: методы, средства защиты

Нередко возникают аварийные ситуации, когда участок электроустановки, электрической сети требуется вывести в ремонт для устранения неисправности, но по определенным причинам это сделать невозможно. Например, обнаружено нарушение контактного соединения на линии напряжением 750 кВ.

Данная линия является очень ответственной и может питать значительную часть энергосистемы в пределах нескольких областей страны. Если в данный момент нет возможности запитать энергосистему от резервной линии, то единственным вариантом устранения неисправности является выполнение работ под напряжением, то есть без предварительного отключения линии электропередач.

Также работа под напряжением в электроустановках рассматривается как один из современных методов обслуживания электроустановок. Вывод участков электроустановок, в частности воздушных линий электропередач – это достаточно трудоемкий процесс, особенно если это очень важная магистральная линия, отключение которой невозможно согласовать в течение года.

В данном случае проведение ремонтных или профилактических работ без снятия напряжения значительно экономит время, требуемое на согласование производимых работ и выполнения мероприятий по выводу в ремонт линии электропередач.

Рассмотрим методы проведения работ под рабочим напряжением электроустановки и соответствующие каждому методу средства защиты ремонтного персонала от поражения электрическим током.

Первый метод – работа непосредственно под потенциалом провода, находящегося под напряжением , человек при этом надежно изолирован от земли. Технология работ под напряжением предусматривает работу человека стоя на изолированной подставке, изолированной рабочей площадке автокрана. Человек при этом находится в специальном экранирующем комплекте одежды. До начала подъема к токоведущим частям экранирующий костюм рабочего соединяется с изолированной рабочей площадкой.

Электрическое напряжение – это разность потенциалов. Поэтому во избежание удара электрическим током перед тем, как приступить к выполнению работ, необходимо произвести выравнивание потенциала экранирующего комплекта и рабочей площадки с токоведущими частями, которые находятся под напряжением. Для выравнивания потенциала изолированная рабочая площадка соединяется с токоведущей частью (проводом, шиной) гибким медным проводником, который крепится при помощи специального зажима изолирующей штангой.

Заземленные части металлоконструкций, опор имеют потенциал, отличный от потенциала токоведущих частей, приближение к ним приводит к удару человека электрическим током. Поэтому для обеспечения безопасности при выполнении работ под потенциалом провода человеку нельзя приближаться к заземленным частям ближе величины допустимого расстояния, которое определено для данного класса напряжения линии.

Например, если выполняются работы на линии напряжением 330кВ, то человеку, работающему под потенциалом провода, запрещается приближаться к металлоконструкциям опор на расстояние менее 2,5 м.

В связи с повышенной опасностью при проведении работ по данному методу, работники должны проходить специализированное обучение, проверку знаний по методике проведения работ под напряжением. На каждый вид работ составляются инструкции, а при планировании работ составляются специальные технологические карты.

Второй метод – работа с изоляцией человека от токоведущих частей, без изоляции человека от земли . Работы по данному методу выполняются с применением изолирующих электрозащитных средств, которые выбираются в соответствии с характером выполняемой работы и классом напряжения электроустановки.

Существуют электрозащитные средства напряжением до и выше 1000 В, которые в свою очередь делят на основные и дополнительные.

Основные защитные средства осуществляют защиту человека от действия электрического напряжения и дуги, они позволяют работать длительное время под рабочим напряжением участка электроустановки.

Дополнительные защитные средства не позволяют работать под рабочим напряжением, они являются дополнительной защитой к основным электрозащитным средствам, позволяют защитить работника от шагового напряжения и напряжения прикосновения.

Данный способ выполнения работ под напряжением является наиболее распространенным в электроустановках. Одним из примеров является проверка наличие напряжения на линии или проверка работоспособности указателя напряжения в электроустановках напряжением выше 1000 В. Сам указатель напряжения является основным электрозащитным средством. Пользоваться указателем напряжением выше 1000 В следует в диэлектрических перчатках – в данном случае они выступают в роли дополнительного электрозащитного средства.

Третий метод предусматривает изоляцию человека, производящего работы, как от земли, так и от токоведущих частей электроустановки, находящихся под рабочим напряжением. Наиболее распространенный пример – проведение работ в электрических цепях до 1000 В: распределительные щитки, шкафы релейной защиты и автоматики оборудования электроустановок.

В данном случае для обеспечения безопасности человека в отношении поражения током применяют электрозащитные средства. Для изоляции человека от токоведущих частей применяют диэлектрические перчатки и инструмент с изолирующими рукоятками (отвертки, плоскогубцы, пассатижи, кусачки, монтерский нож для заделки кабеля и т.д.) – данные защитные средства в электроустановках напряжением до 1000 В относятся к группе основных электрозащитных средств. Для изоляции человека от земли применяют дополнительные защитные средства – диэлектрический коврик или изолирующую подставку.

Работы под напряжением в электроустановках: методы проведения работ, меры защиты

Эксплуатация электрических сетей, различных устройств, которые обеспечивают электроснабжение всех потребителей, требует как периодических испытаний и ремонтов, так и внеплановых. Наиболее сложной категорией, при этом, считается работа под напряжением. Сложность таких работ заключается в том, что персонал обязан выполнять все манипуляции не снимая напряжения, что, соответственно, повышает риск электротравматизма.

Определение

Работой под напряжением считается такой вариант обслуживания всей или только участка электроустановки, когда с нее не снимается рабочее напряжение, а ремонтные или испытательные операции осуществляются в штатном режиме работы электроустановки. Безопасность работников обеспечивается посредством приспособлений и инструмента из изоляционных материалов, которые призваны внести раздел в цепь между напряжением и землей. В зависимости от места расположения изоляции по отношению к человеку выделяют три метода выполнения работ под напряжением.

Методы проведения работ под напряжением

Методика работы под напряжением, в связи с угрозой поражения персонала электротоком, требует особой бдительности и неукоснительного соблюдения мер безопасности. Так как при замыкании частей электроустановки работником на землю начинается протекание электрического тока, то безопасное выполнение работ может обеспечиваться при условии, что человек будет изолирован от земли, или только от токоведущих частей, или и от того, и от другого одновременно.

Изоляция человека от земли

Один из вариантов работы под напряжением – выполнить изоляцию рабочего от заземленных элементов. Наиболее часто применяется на контактной сети городского транспорта и железнодорожных предприятий, питающих линиях, осветительных приборах и т.д. При таком методе профиспытаний или ремонтов линий должно обязательно соблюдаться правило единого потенциала. Это означает, что все члены бригады, инструмент и рабочие площадки должны подводиться к тому же потенциалу, что и линия электропередач.

Рисунок 1: Изолированная вышка автомотрисы

Рассмотрите рисунок 1, здесь приведен пример устройства для изоляции работника на контактной сети т заземленной части. Это вышка автомотрисы, позволяющая работать без снятия напряжения.

На рисунке изображена сама вышка А, переходная площадка Б и изоляторы И. Для обеспечения безопасности вышка приравнивается к потенциалу провода посредством шунтирующей штанги. Это значит, что на нее подается напряжение контактной сети, которое автоматически переходит под ноги работника и человек находится в одном потенциале с токоведущими частями и рабочей площадкой. В то время, как изоляторы И отделяют их от земли и препятствуют протеканию тока, благодаря изоляторам цепь остается разомкнутой и обеспечивается безопасное выполнение работ под напряжением.

Переходная площадка Б в этой ситуации выступает в роли нейтрального элемента, который позволяет переходить с заземленной палубы автомотрисы на площадку, которая находится под напряжением. Направление движения человека показано синей линией. Технология перехода запрещает одновременное движение более одного человека при работе под напряжением. Один человек переходит сначала с палубы на площадку Б, а затем с нее на рабочую площадку А.

В случае аварийной ситуации (пробоя изолятора И, падения провода на землю, перекрытия изоляции площадки), персоналу ничего не будет угрожать. Так как при наличии шунтирующего элемента ток не будет протекать через работника.

В данном случае рассмотрен лишь частный способ выравнивания потенциалов. Но помимо него существуют и другие приспособления:

Все вышеперечисленные способы работ под напряжением должны выполняться только лицами, которые прошли проверку знаний отраслевых инструкций.

Изоляция человека от токоведущих частей, при этом, не изолируя от земли

Такая работа под напряжением предусматривает, что работник будет находиться непосредственно на земле или на постоянно заземленной конструкции. А все манипуляции, которые он производит на распределительных устройствах или на линии обязательно выполняются при помощи электрозащитных средств. Они отделяют работника от тех элементов, которые находятся под напряжением и должны выбираться ответственным руководителем в соответствии с классом напряжения, на который рассчитана электроустановка.

Примеры работ.

В качестве примера рассмотрите работу под напряжением по замене предохранителя, которая может производиться как для устройств до 1 кВ, так и свыше, в зависимости от ситуации.

Рисунок 2: Замена предохранителя под напряжением

Как видите на рисунке 2, показана работа под напряжением во время замены предохранителя в устройстве более 1 кВ. При этом работник обязан соблюдать такие требования безопасности:

Достаточно часто под напряжением выполняется замена предохранителей до 1 кВ в цепях управления, их оперативное удаление при проведении каких-либо плановых или аварийных работ. При этом меры безопасности отличаются от работ в цепях свыше 1 кВ – применять лицевой щиток не требуется, а клещи выбираются для определенного класса напряжения, и могут быть без ограничительных колец, но при этом обязательно применяется отделение человека от земли изолирующей подставкой, обувью или ковриком.

Еще одним примером может послужить работа оперативной штангой. При этом работник может без труда совершать какие-либо манипуляции с теми же однополюсными разъединителями и прочие операции.

Рисунок 3: Работа изолирующей штангой

Здесь, при техническом обслуживании электроустановок выше 1 кВ, применяются куда более жесткие меры безопасности. Согласно технологических карт работник обязан надеть диэлектрические перчатки и щиток. Проверить на изолирующей штанге работу вращающегося механизма. При выполнении манипуляций без отключения линии должен строго соблюдать положение рук относительно ограничительного кольца.

Еще один вариант – работа с указателем напряжения в сетях 6 — 110 кВ. Это устройство позволяет при отключении потребителя убедиться, что на токоведущих элементах отсутствует напряжение. Но предварительно, ремонтный персонал обязан проверить его на работоспособность, что осуществляется посредством прикосновения щупом к тем шинам или элементам, которые заведомо находятся под напряжением.

Рисунок 4: Опробование указателя напряжения

Как видите, на рисунке 4 показано касание щупом одной из шин переменного тока на фазе С, которое обозначено буквой А. В случае наличия напряжения в сигнализаторе Б будет видно горение лампы. Такая работа также выполняется в диэлектрических перчатках, обязательно соблюдается отметка ограничительного кольца.

Изоляция рабочего от токоведущих частей и земли

Данные работы под напряжением при эксплуатации электроустановок требуют выполнения специальных инструкций. Человек, в такой ситуации, подлежит одновременному ограждению изолирующими элементами и от земли, и от токоведущих частей. Следует отметить, что в различных видах работ изоляция от земли может выполняться с целью ограждения от шагового напряжения, а иногда выполняется, как дополнительная или основная преграда на пути протекания тока.

В качестве примера работы под напряжением в сетях до 1 кВ можно рассмотреть чистку панелей электрических двигателей под нагрузкой, испытания изоляторов и прочие.

Рисунок 5: Испытание исправности изолятора

Как видите, данная работа под напряжением выполняется с изолирующей съемной вышки (лейтера) Л. При такой манипуляции человек обязательно должен ограждаться от токоведущих частей, из-за того, что испытание одновременно задействует и токоведущую и заземленную часть изолятора. Персонал, при этом, пользует диэлектрические рукавицы и специальную штангу для измерения с целью оградить себя от напряжения. Но перчатки и штанга являются лишь дополнительными защитными средствами, а вот лейтер выполняет функции основного средства изоляции работника от земли.

Используемые в работе электрозащитные средства

Все защитные приспособления по своей способности обезопасить человека от вредного воздействия тока подразделяются на основные и дополнительные средства. Так, при работе в устройствах до 1 кВ те же перчатки будут выступать в роли основного, а вот в распределительных сетях выше 1 кВ, уже как дополнительное. Потому что в одиночку они не способны полностью устранить токи утечки или могут подвергнуться пробою. А вот диэлектрический коврик во всех случаях является исключительно дополнительным средством.

Посмотрите, в таблицах ниже приведено разделение средств защиты в соответствии с классом напряжения.

Таблица 2. Дополнительные электрозащитные средства для работы в электроустановках:

Читайте также:  Сканеры HP: что делать, если не удалось восстановить связь со сканером? Как сканировать документ на компьютер? Как им пользоваться?

Обязательные требования к средствам защиты

В процессе эксплуатации защитные средства могут утрачивать свойства, обеспечивающие выполнение ними поставленных задач. Чтобы предотвратить какие-либо несчастные случаи, некоторые средства должны проходить периодические испытания и осмотры, а остальные только осмотры. Все процедуры фиксируются в соответствующих журналах, а информация о пригодности после испытания на самом средстве защиты.

Перед началом работ ответственное лицо производит обязательную проверку пригодности изоляционного инструмента или средства. И в случае:

изымает такие средства для ремонта и внеплановой проверки.

Это видео в дополнение темы статьи


Основные методы работ под напряжением

Схема выполнения работ под напряжением характеризуется способом обеспечения безопасности персонала, производящего рабо­ты, и видом (содержанием) технологических операций. В свою оче­редь, способ обеспечения безопасности зависит от факторов опасности и средств, которые могут быть использованы для защиты, а содержа­ние технологических операций — от их целей, номинального напря­жения и конструктивного выполнения ВЛ: расстояний, технического исполнения их элементов и физических характеристик.

Безопасность электромонтера, работающего под напряжением, может быть достигнута применением изолирующих средств, обеспе­чивающих такое увеличение сопротивления электрической цепи про­вод — изоляция — человек — земля, чтобы ток, протекающий через человека, снизился до безопасных значений. Это требование распро­страняется как на изоляцию человека от тех элементов, на которых он производит работу, так и от других частей электроустановки, нахо­дящихся под напряжением.

Необходимая изоляция достигается включением в указанную электрическую цепь элементов защиты, изготовленных из изоляци­онных материалов, либо созданием достаточного изоляционного рас­стояния по воздуху.

Метод работы в контакте. Схема на рис. 24.1 иллюстрирует работу под напряжени­ем на проводе нижней правой фазы ВЛ, при которой безопасность электромонтера обеспечи­вается применением для технологических опе­раций изолирующих перчаток и инструмента с изолирующими ручками. Электромонтер вы­полняет технологические операции, находясь в непосредственной близости от провода, поэтому такой метод производства работ под напряже­нием получил название «работа в контакте».

Если обозначить зону нормальных рабо­чих движений монтера (на рис. 24.1 заштрихо­вана) через Д, то при работе в контакте в эту зо­ну попадают все или некоторые провода линии напряжением до 1 кВ. Изоляция перчаток и ин­струмента должна превышать с определенным запасом напряжение элементов, на которых производятся работы.

Поскольку в процессе работы в контакте на ВЛ электромонтер располагается на зазем­ленных конструкциях опор, а в зону его дейст вий попадают и провода других фаз, находящиеся под напряжением, для повышения безопасности электромонтер одет в костюм с изоли­рующими элементами, исключающими касание токоведущих и за­земленных частей линии, размещается на изолирующей лестнице, а все находящиеся в пределах зоны действий провода и изоляторы вре­менно закрываются специальными изолирующими оболочками.

При выполнении работ под напряжением в других электроус­тановках, например в распределительных щитках 0,38 кВ, устройст­вах вторичных цепей, в качестве дополнительных защитных средств используются изолирующие коврики, а элементы, находящиеся под напряжением, либо отгораживаются экранами, либо закрываются изолирующими оболочками.

В тех случаях, когда выполнять работы в контакте с опоры ВЛ неудобно, электромонтер размещается в изолирующей кабине подъ­емника, которая также защищает его от касания к заземленным час­тям опоры и другим фа­зам линии.

Метод работы на расстоянии. Работы на элементах линий, нахо­дящихся под напряже­нием, при которых изо­ляция электромонтера от этих элементов обес­печивается изолирующи­ми штангами, класси­фицируются как работы на расстоянии.

Рис. 24.2. Схема работ под напряжением по методу работы на расстоянии: а, б— без применения экранов; в, гс использованием экранов; 1 — провод; 2 — изолирующая штанга-манипулятор; 3 — изолирующая силовая штанга; 4 — изолирующая лестница; 5 — изолирующее звено гидроподъемника; 6 — изолирующая кабина гидроподъемника; 7 — изолирующий экран

При этом методе работ монтер может рас­полагаться либо на опо­ре (рис. 24.2, б, г), либо в рабочей кабине подъемника (рис. 24.2, а, в). Длина изолирую­щей штанги должна пе­рекрывать часть зоны нормальных рабочих движений электромон­тера и наименьшее до­пустимое расстояние Р, определяемое как

P = a + bИ

где а — расстояние, учитывающее возможные непроизвольные дви­жения работающего, м; b — коэффициент обеспечения безопасности; И — изоляционное расстояние, учитывающее напряжение пробоя и возможное перенапряжение в сети, м.

Возможности применения методов работы в контакте и работы на расстоянии определяются характеристиками изолирующих защитных средств, расстояниями между проводами линии и между проводами и опорой, видом работы, подлежащей выполнению на линии. Так, вы­пуск изолирующих перчаток для применения в электроустановках до 35 кВ позволяет использовать метод работы в контакте для работ под напряжением на линиях (и других электроустановках) вплоть до 35 кВ.

Наличие широчайшего ассортимента рабочих штанг-манипуля­торов, снабженных различного рода инструментами, силовых штанг, поддерживающих трапов и крановых устройств, устанавливаемых на опорах, дало возможность применять метод работы на расстоянии практически на линиях всех классов напряжения — от 6 до 750 кВ. Бесспорно, что наряду с имеющимися возможностями использова­ния разнообразных приспособлений, предназначенных для работ на расстоянии, расширению области применения этого метода способст­вует соответствующая подготовка персонала. Целесообразно, по воз­можности, использовать на линиях различных классов одинаковую схему работ.

Анализ применения двух рассмотренных методов работ под на­пряжением и последовательности развития технологий свидетельству­ют о том, что чем ближе объект ремонта (узел, элемент линии) находит­ся к работающему, тем удобнее и в целом быстрее выполняется работа.

Не случайно поэтому широкое распространение в практике по­лучили комбинации схем работ под напряжением и сочетания работ под напряжением с обычными методами. В качестве примеров такого сочетания служат схемы работ с отведением провода, находящегося под напряжением, от опоры с помощью штанг (работа на расстоянии) и последующим проведением работы по замене изолятора на опоре вдали от напряжения.

Такой же порядок используется при замене стоек опор, когда про­вода, находящиеся под напряжением, отводятся от заменяемой стойки с помощью изолирующих штанг, устанавливаемых на вспомогательной стойке. Во многих случаях работа на расстоянии используется для уста­новки экранов на провода и изоляторы, когда расстояния до них от ра­бочего места электромонтера сравнимы с наименьшим допустимым рас­стоянием Р, а для удобства выполнения работ целесообразно предельно возможное приближение к ремонтируемому элементу (рис. 24.2, в, г).

Метод работы на потенциале. В схеме работ провод — (чело­век) — изоляция — земля защита электромонтера от протекания по нему тока, значение которого превышает порог чувствитель­ности, осуществляется шунти­рованием пути протекания тока через человека путем выравни­вания потенциала провода, на­ходящегося под рабочим напря­жением, и потенциала рабочего места, на котором размещается электромонтер, с одновременным применением надежной изоля­ции рабочего места от земли или заземленных элементов опоры (рис. 24.3).

При этом от воздействия электрического поля электро­монтер защищается электро­проводящим комплектом спец­одежды, образующим клетку Фарадея, внутри которой дейст­вие поля сведено к минимуму.

На рис. 24.4 приведены схемы емкостных связей и путей протекания тока при работе человека на изолирующей площадке до переноса потенциала (рис. 24.4, а) и после переноса потенциала провода на рабочую площадку (рис. 24.4, б).

Предотвращение приближения электромонтера, работающего по методу работы на потенциале, к заземленным частям опоры достига­ется сохранением достаточных расстояний от работающего до опоры.

Метод работ на потенциале обеспечивает (как и работа в кон­такте) удобство выполнения технологических операций монтером, на­ходящимся в непосредственной близости к ремонтируемому элементу.

Поэтому на практике применение этого метода, в особенности на линиях сверхвысокого напряжения со значительными расстояниями между фазами, большой массой элементов изолирующих подвесок и арматуры, а также при работах на натяжных гирляндах, имеет суще­ственные преимущества перед работой на расстоянии со штангами.

Основные методы работ под напряжением реализуются в прак­тике эксплуатации в виде различных технологий на линиях электро­передачи и других электроустановках всех классов напряжения.

Работы под напряжением в электроустановках: методы проведения работ, меры защиты

Определение

Работой под напряжением считается такой вариант обслуживания всей или только участка электроустановки, когда с нее не снимается рабочее напряжение, а ремонтные или испытательные операции осуществляются в штатном режиме работы электроустановки. Безопасность работников обеспечивается посредством приспособлений и инструмента из изоляционных материалов, которые призваны внести раздел в цепь между напряжением и землей. В зависимости от места расположения изоляции по отношению к человеку выделяют три метода выполнения работ под напряжением.

Методы проведения работ под напряжением

Методика работы под напряжением, в связи с угрозой поражения персонала электротоком, требует особой бдительности и неукоснительного соблюдения мер безопасности. Так как при замыкании частей электроустановки работником на землю начинается протекание электрического тока, то безопасное выполнение работ может обеспечиваться при условии, что человек будет изолирован от земли, или только от токоведущих частей, или и от того, и от другого одновременно.

Изоляция человека от земли

Один из вариантов работы под напряжением – выполнить изоляцию рабочего от заземленных элементов. Наиболее часто применяется на контактной сети городского транспорта и железнодорожных предприятий, питающих линиях, осветительных приборах и т.д. При таком методе профиспытаний или ремонтов линий должно обязательно соблюдаться правило единого потенциала. Это означает, что все члены бригады, инструмент и рабочие площадки должны подводиться к тому же потенциалу, что и линия электропередач.


Рисунок 1: Изолированная вышка автомотрисы

Рассмотрите рисунок 1, здесь приведен пример устройства для изоляции работника на контактной сети т заземленной части. Это вышка автомотрисы, позволяющая работать без снятия напряжения.

На рисунке изображена сама вышка А, переходная площадка Б и изоляторы И. Для обеспечения безопасности вышка приравнивается к потенциалу провода посредством шунтирующей штанги. Это значит, что на нее подается напряжение контактной сети, которое автоматически переходит под ноги работника и человек находится в одном потенциале с токоведущими частями и рабочей площадкой. В то время, как изоляторы И отделяют их от земли и препятствуют протеканию тока, благодаря изоляторам цепь остается разомкнутой и обеспечивается безопасное выполнение работ под напряжением.

Переходная площадка Б в этой ситуации выступает в роли нейтрального элемента, который позволяет переходить с заземленной палубы автомотрисы на площадку, которая находится под напряжением. Направление движения человека показано синей линией. Технология перехода запрещает одновременное движение более одного человека при работе под напряжением. Один человек переходит сначала с палубы на площадку Б, а затем с нее на рабочую площадку А.

В случае аварийной ситуации (пробоя изолятора И, падения провода на землю, перекрытия изоляции площадки), персоналу ничего не будет угрожать. Так как при наличии шунтирующего элемента ток не будет протекать через работника.

В данном случае рассмотрен лишь частный способ выравнивания потенциалов. Но помимо него существуют и другие приспособления:

Все вышеперечисленные способы работ под напряжением должны выполняться только лицами, которые прошли проверку знаний отраслевых инструкций.

Изоляция человека от токоведущих частей, при этом, не изолируя от земли

Такая работа под напряжением предусматривает, что работник будет находиться непосредственно на земле или на постоянно заземленной конструкции. А все манипуляции, которые он производит на распределительных устройствах или на линии обязательно выполняются при помощи электрозащитных средств. Они отделяют работника от тех элементов, которые находятся под напряжением и должны выбираться ответственным руководителем в соответствии с классом напряжения, на который рассчитана электроустановка.

Примеры работ.

В качестве примера рассмотрите работу под напряжением по замене предохранителя, которая может производиться как для устройств до 1 кВ, так и свыше, в зависимости от ситуации.


Рисунок 2: Замена предохранителя под напряжением

Как видите на рисунке 2, показана работа под напряжением во время замены предохранителя в устройстве более 1 кВ. При этом работник обязан соблюдать такие требования безопасности:

Достаточно часто под напряжением выполняется замена предохранителей до 1 кВ в цепях управления, их оперативное удаление при проведении каких-либо плановых или аварийных работ. При этом меры безопасности отличаются от работ в цепях свыше 1 кВ – применять лицевой щиток не требуется, а клещи выбираются для определенного класса напряжения, и могут быть без ограничительных колец, но при этом обязательно применяется отделение человека от земли изолирующей подставкой, обувью или ковриком.

Еще одним примером может послужить работа оперативной штангой. При этом работник может без труда совершать какие-либо манипуляции с теми же однополюсными разъединителями и прочие операции.


Рисунок 3: Работа изолирующей штангой

Читайте также:  Разновидности базальтового материала: плита, картон и сетка

Здесь, при техническом обслуживании электроустановок выше 1 кВ, применяются куда более жесткие меры безопасности. Согласно технологических карт работник обязан надеть диэлектрические перчатки и щиток. Проверить на изолирующей штанге работу вращающегося механизма. При выполнении манипуляций без отключения линии должен строго соблюдать положение рук относительно ограничительного кольца.

Еще один вариант – работа с указателем напряжения в сетях 6 — 110 кВ. Это устройство позволяет при отключении потребителя убедиться, что на токоведущих элементах отсутствует напряжение. Но предварительно, ремонтный персонал обязан проверить его на работоспособность, что осуществляется посредством прикосновения щупом к тем шинам или элементам, которые заведомо находятся под напряжением.


Рисунок 4: Опробование указателя напряжения

Как видите, на рисунке 4 показано касание щупом одной из шин переменного тока на фазе С, которое обозначено буквой А. В случае наличия напряжения в сигнализаторе Б будет видно горение лампы. Такая работа также выполняется в диэлектрических перчатках, обязательно соблюдается отметка ограничительного кольца.

Изоляция рабочего от токоведущих частей и земли

Данные работы под напряжением при эксплуатации электроустановок требуют выполнения специальных инструкций. Человек, в такой ситуации, подлежит одновременному ограждению изолирующими элементами и от земли, и от токоведущих частей. Следует отметить, что в различных видах работ изоляция от земли может выполняться с целью ограждения от шагового напряжения, а иногда выполняется, как дополнительная или основная преграда на пути протекания тока.

В качестве примера работы под напряжением в сетях до 1 кВ можно рассмотреть чистку панелей электрических двигателей под нагрузкой, испытания изоляторов и прочие.


Рисунок 5: Испытание исправности изолятора

Как видите, данная работа под напряжением выполняется с изолирующей съемной вышки (лейтера) Л. При такой манипуляции человек обязательно должен ограждаться от токоведущих частей, из-за того, что испытание одновременно задействует и токоведущую и заземленную часть изолятора. Персонал, при этом, пользует диэлектрические рукавицы и специальную штангу для измерения с целью оградить себя от напряжения. Но перчатки и штанга являются лишь дополнительными защитными средствами, а вот лейтер выполняет функции основного средства изоляции работника от земли.

Главные герои

Используемые в работе электрозащитные средства

Все защитные приспособления по своей способности обезопасить человека от вредного воздействия тока подразделяются на основные и дополнительные средства. Так, при работе в устройствах до 1 кВ те же перчатки будут выступать в роли основного, а вот в распределительных сетях выше 1 кВ, уже как дополнительное. Потому что в одиночку они не способны полностью устранить токи утечки или могут подвергнуться пробою. А вот диэлектрический коврик во всех случаях является исключительно дополнительным средством.

Посмотрите, в таблицах ниже приведено разделение средств защиты в соответствии с классом напряжения.

Таблица 1. Основные электрозащитные средства для работы в электроустановках:

До 1000 В включительноСвыше 1000 В
Изолирующие штангиИзолирующие штанги всех видов
Изолирующие клещиИзолирующие клещи
Электроизмерительные клещиЭлектроизмерительные клещи
Указатели напряженияУказатели напряжения
Диэлектрические перчаткиУстройства для создания безопасных условий труда при проведении испытаний и измерений в электроустановках (указатели напряжения для фазировки, указатели повреждения кабелей и др.)
Инструмент с изолирующим покрытием

Таблица 2. Дополнительные электрозащитные средства для работы в электроустановках:

До 1000 В включительноСвыше 1000 В
Диэлектрическая обувьДиэлектрические перчатки
Диэлектрические коврыДиэлектрическая обувь
Изолирующие подставки
Изолирующие накладки
Диэлектрические ковры
Изолирующие подставки
Изолирующие колпакиИзолирующие накладки
Сигнализаторы напряженияИзолирующие колпаки
Защитные ограждения (щиты, ширмы)Штанги для переноса и выравнивания потенциала
Переносные заземленияСигнализаторы напряжения
Плакаты и знаки безопасностиЗащитные ограждения (щиты, ширмы)
Другие средства защитыПереносные заземления
Плакаты и знаки безопасности
Другие средства защиты

Таблица с выходом серий

Номер серииНазвание серииДата выхода
1х01Эпизод 1Весна 2020 года
1х02Эпизод 2Весна 2020 года
1х03Эпизод 3Весна 2020 года
1х04Эпизод 4Весна 2020 года
1х05Эпизод 5Весна 2020 года
1х06Эпизод 6Весна 2020 года
1х07Эпизод 7Весна 2020 года
1х08Эпизод 8Весна 2020 года
1х09Эпизод 9Весна 2020 года
1х10Эпизод 10Весна 2020 года

Обязательные требования к средствам защиты

В процессе эксплуатации защитные средства могут утрачивать свойства, обеспечивающие выполнение ними поставленных задач. Чтобы предотвратить какие-либо несчастные случаи, некоторые средства должны проходить периодические испытания и осмотры, а остальные только осмотры. Все процедуры фиксируются в соответствующих журналах, а информация о пригодности после испытания на самом средстве защиты.

Перед началом работ ответственное лицо производит обязательную проверку пригодности изоляционного инструмента или средства. И в случае:

изымает такие средства для ремонта и внеплановой проверки.

ОРГАНИЗАЦИЯ БЕЗОПАСНОГО ВЫПОЛНЕНИЯ РАБОТ ПОД НАПРЯЖЕНИЕМ В ЭЛЕКТРОУСТАНОВКАХ ДО 1000 И ВЫШЕ 1000 В

Особенности метода работ под напряжением

В период Великой Отечественной войны в Советском Союзе впервые в мировой практике начал широко применяться метод ремонта воздушных линий электропередачи 35 и ПО кВ без их отключения, т.е. под напряжением. При этом линия электропередачи при ремонте оставалась в работе, обеспечивая бесперебойное электроснабжение потребителей; персонал, выполняющий ремонтные работы, будучи надежно изолированным от земли, безопасно прикасался неизолированным инструментом или голыми руками к проводам линии, находящейся под напряжением.

В настоящее время ремонт воздушных линий электропередачи под напряжением проводится во многих странах (Венгрии, Германии, Англии, США, Японии и др.), причем этот метод ремонта применяется на воздушных линиях практически любого напряжения (от 1 до 750 кВ включительно), а иногда и в открытых распределительных установках.

Накопленный опыт по техническому обслуживанию, ремонтам при эксплуатации оборудования воздушных линий электропередачи, распределительных устройств, внутренних электрических сетей переменного тока напряжением до 1000 В без снятия напряжения с токоведущих частей и действующие нормативные документы предопределили порядок безопасного выполнения работ в действующих электроустановках.

Следует заметить, что при выполнении работ под напряжением безопасность персонала обеспечивается по одной из схем: провод под напряжением — изоляция — человек — земля; провод под напряжением — человек — изоляция — земля.

В свою очередь первая схема (провод под напряжением — изоляция — человек — земля) может быть реализована двумя методами: работа в контакте; работа на расстоянии.

Работа в контакте характеризуется тем, что части тела работника защищаются от поражения электрическим током изоляцией токоведущих частей и защитными средствами, основными из которых являются диэлектрические перчатки, галоши и изолированный инструмент. При этом человек выполняет работу в непосредственном контакте с частями электроустановки, находящимися под напряжением.

Этот метод может применяться для выполнения работ на ВЛ, в распределительных устройствах и кабельных линиях напряжением до 1000 В.

Расстояние от неизолированных токоведущих частей до работника должно соответствовать данным, приведенным в табл. 14.1.

При выполнении работ этим методом, персонал, оставаясь па потенциале земли, может вводить в зону минимального приближения защищенные части тела, а также инструменты, предназначенные для выполнения работ.

Основным условием начала работ под напряжением данным методом является изолирование рабочего места, т.е. всех частей электроустановок, находящихся под напряжением.

Работа на расстоянии. В зависимости от напряжения в электроустановке при этом методе работа выполняется с применением основных (изолирующие штанги, клещи) и дополнительных (диэлектрические перчатки, боты, накладки) электрозащитиых средств. Этот метод, как правило, применяется на ВЛ напряжением более 1000 В.

Работы с применением способа провод под напряжением — человек — изоляция — земля выполняется при условии соблюдения следующего условия: изоляция работающего от земли осуществляется специальными устройствами соответствующего класса напряжения.

Расстояния от неизолированных токоведущих частей до работника

Расстояние от людей, применяемых ими инструментов, приспособлений, временных ограждений, м

Расстояние от грузоподъемных механизмов и машин в рабочем положении, стропов, грузозахватных приспособлений и др., м

Электроустановки до 1000 В, кроме ВЛ

Электроустановки ВЛ до 1000 В

Организация работ под напряжением строго регламентируется нормативными документами, в которых отражены требования к составу и численности бригады, а также порядок производства работ.

При выполнении работ под напряжением на открытой территории необходимо непосредственно перед началом работы определить атмосферные условия, влияющие на возможность выполнения работ, и осуществлять контроль изменения атмосферных условий в процессе работы. В табл. 14.2 приведены данные, характеризующие возможность выполнения работ под напряжением в зависимости от атмосферных условий.

Для выполнения работ под напряжением должны использоваться только сертифицированные средства защиты, имеющие маркировку с указанием завода-изготовителя, наименования или типа изделия и года выпуска с неистекшим сроком периодического испытания, который определяется по штампу испытательной лаборатории.

Отечественный и зарубежный опыт показывает, что до 90 % объема работ по ремонту линий можно выполнять под напряжением.

Возможность выполнения работ под напряжением в зависимости от атмосферных условий

Возможность работ под напряжением до 1000 В переменного тока и 1500 В постоянного тока

в изолирующих перчатках с помощью ручного инструмента

Сильный дождь, мокрый снег

Туман, густой снег

Слабый ветер (менее 9,5 м/с)

Сильный и шквалистый ветер (более 9,5 м/с)

Заметные молнии, слышимые раскаты грома

Примечание, а — разрешается выполнять работы под напряжением; 6 — разрешается заканчивать начатые работы; начинать работы не разрешается; в — не разрешается начинать работы; начатые работы следует прекратить немедленно; «-» — работы под напряжением не допускаются; «+» — при визуальной связи между членами бригады.

Если условия работы иа рабочем месте не обеспечивают безопасность работающих, то выполнение работ запрещается.

Научные исследования и практический опыт позволили выработать ряд требований, которые необходимо соблюдать при выполнении работ под напряжением:

в помещениях с повышенной опасностью поражения электрическим током работник должен быть обут в диэлектрическую обувь или стоять на изолирующей подставке или на резиновом диэлектрическом ковре;

следует применять спецодежду и спецобувь, стойкую к воздействию электрической дуги, термостойкую защитную каску с защитным экраном;

не допускается работать в одежде с короткими или засученными рукавами, заворачивать голенища сапог;

отключенные провода или кабели, остающиеся в распределительном устройстве, нужно заизолировать и зафиксировать в целях не допущения самопроизвольных перемещений и др.

Под напряжением на ВЛ с изолированными проводами или с неизолированными проводами напряжением до 0,38 кВ производятся: замена элементов опор и линейной арматуры; снятие с проводов набросов; замена провода на отдельных участках линии; протяжка проводов; замена соединительных, осветительных и натяжных зажимов; подключение или отсоединение ответвлений к электроприемникам; замена участка или восстановление изоляции отдельного фазного провода.

При выполнении работы без снятия напряжения на неизолированных проводах в электроустановках напряжением до 1000 В необходимо изолировать провода и металлическую арматуру с помощью изолирующих накладок и колпаков, соответствующих классу напряжения электроустановки.

При этом следует изолировать:

все токоведущие части электроустановки, находящиеся под напряжением, к которым возможно приближение работника, неизолированного инструмента и т.д. па расстояние менее 0,6 м, а также проводящие части электроустановки, создающие возможность замыкания на землю или межфазного замыкания;

все соседние части электроустановки, которые находятся или могут находиться под напряжением и на которых непосредственно работа не проводится, но к которым возможно приближение па расстояние менее 0,6 м при выполнении работы [32].

Части электроустановки с разными потенциалами должны изолироваться отдельно.

Не менее важным является соблюдение порядка наложения изолирующих накладок. Наложение необходимо начинать с токоведущих частей электроустановки, находящейся ближе к электромонтеру, с последовательным переходом к более удаленным частям. При этом части электроустановки, на которых не выполняется работа, но с которыми возможен контакт во время проведения работ, должны быть изолированы с помощью изолирующей пленки либо изолирующих ковров или накладок.

В электроустановках до 1000 В под напряжением могут также выполняться работы по снятию и установке предохранителей без нагрузки.

Под напряжением и под нагрузкой допускается заменять: предохранители во вторичных цепях; предохранители трансформаторов напряжения и предохранители пробочного типа.

Под напряжением может выполняться чистка изоляции в закрытых распределительных установках (ЗРУ) с применением специальных щеток на изолирующих штангах либо пылесосом в комплекте с полыми изолирующими штангами и насадками. Такой вид работ допускается при наличии в ЗРУ проходов достаточной ширины, позволяющих свободно оперировать пылеудаляющими средствами. Головки, насаживаемые на полые изолирующие штанги пылесосов, также должны быть выполнены из изоляционного материала во избежание замыкания соседних фаз электроустановки при чистке изоляции.

На неотключенной ВЛ электропередачи напряжением выше 1000 В могут выполняться работы, не связанные с прикосновением к проводам: окраска металлических и антисептирование деревянных опор; выправка опор; замена отдельных деталей деревянных опор, например пасынков, траверс, стоек и др., а также опор в целом; замена грозозащитных тросов и т.п.

Одним из достоинств такого метода выполнения ремонтных работ является то, что при ремонте неотключеиных линий требуется меньше ремонтного персонала, так как работы могут производиться в разное время, а не одновременно, как работы при снятии напряжения.

Как было отмечено выше, в основу метода работы в контакте, т.е. с непосредственным прикосновением человека к проводу, находящемуся под рабочим напряжением, положен принцип изоляции человека от земли и предметов, имеющих отличный от провода потенциал. Работы со снятием напряжения выполняются при полном или частичном отключении электроустановки.

Следует заметить, что при работах с частичным отключением электроустановки работающий не должен приближаться к токоведущим частям, находящимся под напряжением, на расстояния меньше указанных в табл. 14.3. При этом запрещается работать в согнутом положении, если при выпрямлении расстояние до токоведущих частей будет меньше указанного в табл. 14.3.

В электроустановках электростанций и подстанций 6—ПО кВ при работе около неогражденпых токоведущих частей запрещается располагаться так, чтобы эти части находились сзади или с двух боковых сторон.

При выполнении работ без снятия напряжения разрешается работать за постоянными и временными ограждениями токоведущих частей, на корпусах оборудования, на поверхности оболочек кабелей, а также на расстояниях от неогражденпых токоведущих частей, находящихся под напряжением больше указанных в табл. 14.3.

В электроустановках выше 1000 В при работах со снятием напряжения на месте производство работ должны быть отключены:

токоведущие части, на которых будут производиться работы;

неогражденные токоведущие части, к которым требуется приближаться людям на расстояния менее указанных в табл. 14.4 или механизмам и грузоподъемным машинам на расстояние менее приведенных в табл. 14.4.

Наименьшие допустимые расстояния от людей и применяемых ими инструментов и приспособлений, а также от временных ограждений до токоведущих частей, находящихся под напряжением выше 1000 В

Меры защиты при выполнении работ под напряжением

Способы защиты

Для того чтобы вывести эти части электроустановок, потребуется немало усилий, также, это может быть сложно, если это важная высоковольтная линия и нет возможности её отключить. Именно поэтому работа под напряжением – развивающийся и совершенствующийся современная технология обслуживания энергосистем, которая значительно ускоряет процесс устранения неполадок.

Существует несколько способов, позволяющих работать вблизи объектов под напряжением. Определенные средства защиты рабочего от повреждения током соответствуют каждому способу. Далее мы рассмотрим три из них.

Изоляция рабочего от земли

В это случае работы выполняются под напряжением, а также под потенциалом провода. Деятельность рабочего, стоящего на изолированной площадке с использованием специальной экипировки здесь является методологией работы под нагрузкой. Его костюм устроен таким образом, что изолированная подставка без труда к нему подсоединяется.

До начала ремонта нужно сначала выровнять потенциалы рабочей подставки и экранирующего костюма с необесточенными токоведущими частями. Выравнивание производится за счет соединения изолированной площадки и токоведущего участка благодаря медному проводнику.

Токоведущие участки с заземленными частями металлоконструкций аналогичным образом имеют разницу потенциалов. Из-за этого рабочему категорически запрещено подходить к ним на расстояние, которое превышает допустимые нормы для данного класса напряжения линии. В противном случае, рабочий может получить серьезные повреждения электрическим током. К примеру, рабочему запрещается подходить к металлоконструкциям ближе, чем на 2 с половиной метра, при проведении работ в распределительных сетях на 330 кВ.

Каждый работник должен проходить специальное обучение и проверку на знание технологии проведения работы по этому методу, так как это большой риск. Для планировки рабочего процесса составляют особые технологические карты, а также специальные инструкции.

Изоляция рабочего от токопроводящих участков, не изолируя от земли

При этом методе обязательным является использование специальных электрозащитных средств. Они подбираются исходя из характера работы и класса напряжения электроустановки. Существуют основные и дополнительные электрозащитные средства для работы с напряжением до 1000 вольт и выше.

Работать в течении какого-то времени под нагрузкой позволяют основные защитные средства. Они предохраняют рабочего от влияния дуги и электрического напряжения на участке электроустановки.

Использование дополнительных средств защиты предназначено только для вспомогательной защиты вдобавок к основным. Благодаря им нельзя работать под нагрузкой, они способны защитить лишь от напряжения прикосновения и шагового напряжения. Такой метод проведения работ является, пожалуй, наиболее часто используемым в электроустановках.

Для наглядности приведем пример:

Проверка указателя напряжения в электрических установках выше 1 кВ. Основным изоляционным средством является этот указатель, а использовать его необходимо лишь с применением диэлектрических перчаток. В этом примере они и будут представлять собой дополнительное защитное средство.

Изоляция рабочего от токоведущих частей и земли

Самый популярный пример — это выполнение электромонтажных работ в сети под напряжением до 1000 вольт. К ним относятся распределительные щитки, а также шкафы релейной защиты и автоматики.

В этом методе защитные приспособления обеспечивают надежную безопасность рабочего от повреждений электрическим током. Диэлектрические перчатки и такие инструменты с изоляционными рукоятями как кусачки, отвертки, пассатижи и др., служат для изоляции работника, а в таких электроустановках, где напряжение достигает 1000 вольт, являются основными средствами защиты от поражения электричеством. Также существуют дополнительные средства для изоляции от земли, а именно диэлектрический коврик и изолирующая подставка.

Наглядные инструкции

Напоследок рекомендуем вам просмотреть видео, на котором предоставлены общие сведения о проведении работ под высоким напряжением:

А вот как это делают в США:

Теперь вы знаете, как производятся работы под напряжением и какие меры безопасности нужно предпринимать персоналу. Берегите себя!

Рекомендуем также прочитать:

Правила безопасной эксплуатации электроустановок – Работы под напряжением

Содержание материала

Раздел 15, Глава 4

РАБОТЫ ПОД РАБОЧИМ НАПРЯЖЕНИЕМ

16.4.1. Работы на ВЛ и в РУ, находящихся под рабочим напряжением, следует проводить по трем схемам:
– “провод – человек – изоляция – земля”, когда выполняющий работу работник находится под потенциалом токоведущих частей и изолирован от земли;
– “провод – изоляция – человек – земля”, когда выполняющий работу работник изолирован от токоведущих частей;
– “провод – изоляция – человек – изоляция – земля”, когда выполняющий работу работник изолирован от провода и от земли.
16.4.2. К работам под рабочим напряжением следует допускать работников, прошедших специальное обучение методам безопасного проведения работ с проверкой знаний и записью в удостоверении о предоставлении права проведения таких работ.
16.4.3. Для устранения возможных причин поражения током работников, выполняющих работу под потенциалом провода, необходимо соблюдение следующих трех условий:
– надежное изолирование работника от земли;
– применение экранирующего комплекта одежды;
– выравнивание потенциалов экранирующего комплекта одежды, рабочей площадки и провода.
До начала подъема изолирующего устройства с работником к проводу (шине) экранирующий комплект одежды необходимо соединить с металлической рабочей площадкой изолирующего устройства.
Перед прикосновением работника к проводу необходимо выполнить выравнивание потенциалов площадки изолирующего устройства и провода, для чего гибкий медный проводник сечением не менее 4 кв.мм, предварительно присоединенный к рабочей площадке, накладывается при помощи специальной изолирующей штанги на провод.
Расстояние между работником, выполняющим работу с изолирующего устройства, т.е. с устройства, находящегося под потенциалом провода, и заземленными частями линии во время работы не должно быть менее указанного в таблице 5.1 настоящих Правил.
Конкретные виды работ, выполняемых под потенциалом провода, следует выполнять по технологическим картам и специальным инструкциям.
16.4.4. Работы под напряжением с изоляцией человека от провода необходимо проводить с применением электрозащитных средств для соответствующего напряжения.
16.4.5. Члены бригады, имеющие право выполнять работы под потенциалом провода (с непосредственным прикосновением до токоведущих частей), должны иметь группу IV, а остальные члены бригады – группу III.
16.4.6. Запрещается прикасаться к изоляторам и арматуре изолирующих подвесок, имеющих иной, чем провод, потенциал, а также передавать или получать инструмент и приспособления работникам, не находящимся на той же рабочей площадке, – при выполнении работ с площадки изолирующего устройства, находящегося под потенциалом провода.
При необходимости передачи инструмента рабочую площадку следует отсоединить от провода, опустить на безопасное расстояние, после чего ее снова поднимают и соединяют с проводом.
16.4.7. Перед началом проведения работ на изолирующих подвесках необходимо проверить измерительной штангой электрическую прочность подвесных изоляторов и наличие всех шплинтов и замков в арматуре. При наличии выпускающих зажимов следует заклинить их на опоре, на которой проводится работа, и на соседних опорах если это требуется по рельефу трассы.
16.4.8. Работы на изолирующей подвеске по ее перецепке, замене отдельных изоляторов, арматуры, проводимые монтерами, находящимися на изолирующих устройствах или траверсах, допускается выполнять при условии, что исправные изоляторы в подвеске составляют не менее 70 %, а на ВЛ 750 кВ – при наличии не более пяти дефектных изоляторов в одной подвеске.
16.4.9. Перецепливать с траверс изолирующие подвески на ВЛ
330 кВ и выше, устанавливать и отцеплять от траверсы необходимые приспособления следует в диэлектрических перчатках и в экранирующем комплекте одежды.
Разрешается на ВЛ 35 кВ прикасаться к шапке первого изолятора при двух исправных изоляторах в изолирующей подвеске, а на
ВЛ 110 кВ и выше – к шапкам первого и второго изоляторов. Отсчитывать изоляторы следует от траверсы.
16.4.10. Установка трубчатых разрядников на ВЛ 35, 110 кВ под напряжением допускается при условии применения изолирующих подвесных габаритников, исключающих возможность приближения внешнего электрода разрядника к проводу на расстояние, менее заданного.
Запрещается находиться в зоне возможного выхлопа газов при приближении внешнего электрода разрядника к проводу или отводе электрода при снятии разрядника. Приближать или отводить внешний электрод разрядника следует при помощи изолирующей штанги.
16.4.11. Запрещается приближаться к изолированному от опоры молниезащитному тросу на расстояние менее 1 м.
При использовании троса в схеме плавки гололеда допустимое расстояние приближения к тросу следует определять в зависимости от напряжения плавки.
16.4.12. Запрещается работать на ВЛ и ВЛС, находящихся под напряжением, при тумане, дожде, снегопаде; в темное время суток, а также при ветре, затрудняющем проведения работ на опоре.

Раздел 15, Глава 5

ОБМЫВАНИЕ И ЧИСТКА ИЗОЛЯТОРОВ ПОД НАПРЯЖЕНИЕМ

16.5.1. Допускается обмывать гирлянды изоляторов, опорные изоляторы и фарфоровую изоляцию оборудования, не снимая напряжения с токоведущих частей, сплошной струей воды с удельной проводимостью не выше 1430 мкСм/см для ВЛ и 667 мкСм/см для ОРУ.
Расстояние по струе не должно быть менее указанного в таблице 16.1.
Не допускается применять для обмывки изоляторов воду с неизвестной электропроводимостью.

Минимально допустимые расстояния по струе воды между насадкой и обмываемым изолятором

16.5.2. В случае обмывания изоляции необходимо заземлять ствол, цистерну с водой, а также применяемые механизмы.
При обмывании с телескопической вышки ствол с насадкой необходимо соединить с корзиной вышки и рамой автоцистерны гибким медным проводником сечением не менее 25 кв.мм.
При обмывании с земли необходимо пользоваться диэлектрическими перчатками, а при обмывании с телескопической вышки или со специальной металлической площадки, смонтированной на автоцистерне, пользоваться перчатками не требуется.
16.5.3. Запрещается при обмывании, стоя на земле, прикасаться к машине или механизму, которые используются для обмывания, выходить из кабины или кузова и входить в них.
Должны быть приняты меры для предотвращения приближения посторонних людей к машинам и механизмам, применяемым при обмывании.
Разрешается переносить рукава с водой только после прекращения обмывания.
16.5.4. В ЗРУ чистить изоляторы, не снимая напряжения с токоведущих частей, следует специальными щетками на изолирующих
штангах либо пылесосом в комплекте с полыми изолирующими штангами с насадками.
Перед началом проведения работ изоляционные поверхности
штанг следует очистить от пыли. Внутреннюю полость штанг необходимо систематически очищать от пыли и в процессе чистки.
Чистку следует проводить с пола или с устойчивых подмостей.
При этом следует пользоваться диэлектрическими перчатками.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *