Что такое синхронный двигатель и как он работает?

В качестве устройства преобразования электрической энергии в механическую в промышленности и быту используется синхронный электродвигатель. В сравнении с другими типами электрических машин он получил меньшее распространение, но в отведенных сферах является незаменимым фаворитом. В чем особенность синхронных агрегатов и как их применяют на практике, мы рассмотрим в данной статье.

Устройство

Конструктивно синхронный электродвигатель состоит из неподвижного элемента, подвижной части, обмоток различного назначения, может комплектоваться коллекторным узлом. Далее рассмотрим каждую составляющую синхронного агрегата более детально на рабочем примере (рисунок 1).

Рис. 1. Устройство синхронного электродвигателя

Принцип работы

В основе работы синхронного электродвигателя лежит взаимодействие магнитного потока, генерируемого рабочими обмотками с постоянным магнитным потоком. Наиболее распространенной моделью синхронной электрической машины является вариант с рабочей обмоткой на статоре и обмоткой возбуждения на роторе.

Рис. 2. Принцип действия синхронного электродвигателя

Как видите на рисунке 2 выше, в обмотку статора подается трехфазное напряжение из сети, которое формирует переменное магнитное поле. На обмотки ротора электродвигателя подано постоянное напряжение, которое индуцирует такой же постоянный магнитный поток у полюсов. Для наглядности рассмотрим процесс на упрощенной модели синхронного агрегата (рисунок 3).

Рис. 3. Принцип формирования потоков в синхронной электрической машине

При подаче питания на фазные витки статора электродвигателя первый пик амплитуды тока и ЭДС взаимоиндукции приходиться на фазу A, затем B и фазу C.

На графике показана периодичность чередования кривых в зависимости от времени:

Оборот поля статора происходит в течении периода, а за счет того, что ротор обладает собственным электромагнитным усилием постоянным во времени, то он синхронно следует за движением переменного магнитного поля, вращаясь вокруг заданной оси. В результате такого вращения происходит синхронное движение ротора вслед за сменой амплитуды ЭДС в витках рабочих обмоток, за счет этого явления электродвигатель и получил название синхронного. Наличие отдельного питания отразилось и на схематическом обозначении таких электрических машин (рисунок 4) в соответствии с ГОСТ 2.722-68.

Рис. 4. Схематическое обозначение синхронного электродвигателя

Отличие от асинхронного двигателя

Основным отличием синхронного электродвигателя от асинхронного заключается в принципе преобразования электрической энергии в механическое вращение. У синхронного электродвигателя процесс вращения ротора идентичен вращению рабочего электромагнитного поля, вырабатываемого трехфазной сетью. А вот у асинхронного рабочее поле самостоятельно наводит ЭДС в роторе, которая уже затем вырабатывает собственный поток взаимоиндукции и приводит вал во вращение. В результате чего асинхронные электрические машины получают разность во вращении рабочего поля и нагрузки на валу, что выражается физической величиной – скольжением.

В работе классические модели асинхронных электродвигателей с короткозамкнутым ротором:

В некоторой степени эти недостатки преодолевает асинхронный двигатель с фазным ротором, но в полной мере избавиться от недостатков получается лишь синхронному агрегату.

Рис. 5. Отличие асинхронного от синхронного электродвигателя

Разновидности

В современной промышленности и бытовых приборах синхронные электродвигатели используются для решения самых разнообразных задач. Как результат, существенно разнятся и их конструктивные особенности. На практике выделяют несколько критериев, по которым разделяются виды синхронных агрегатов. В соответствии с ГОСТ 16264.2-85 могут подразделяться по таким техническим характеристикам:

В зависимости от способа получения поля ротора выделяют такие типы синхронных электродвигателей:

Рис. 6. Синхронный электродвигатель с постоянными магнитами

С реактивным ротором — конструкция выполнена таким образом, что в его сердечнике происходит преломление магнитных линий, приводящее всю конструкцию в движение (см. рисунок 7). Под воздействием силового поля поперечные и продольные составляющие в роторе не равны за счет чего пластины поворачиваются вслед за полем.

Рис. 7. Пример реактивного ротора

В зависимости от наличия полюсов все синхронные электродвигатели можно подразделить на:

В зависимости от расположения рабочих обмоток различают прямые (на статоре) и обращенные (рабочие обмотки на роторе).

Режимы работы

Большинство электрических машин обладают обратимой функцией, не составляют исключения и синхронные агрегаты. Их также можно использовать в качестве электрического привода или в качестве генератора, вырабатывающего электроэнергию. Оба режима отличаются способом воздействия на электрическую машину – подачу напряжения на рабочие обмотки или приведение в движение ротора за счет механического усилия.

Генераторный режим

Для производства электроэнергии в сеть используются именно синхронные генераторы. В большинстве случаев для этой цели используются электрические машины с фазными обмотками на статоре, что существенно упрощает процесс съема мощности и дальнейшей передачи ее в сеть. Физически генерация происходит при воздействии электромагнитного поля обмотки возбуждения синхронного генератора с обмотками статора. Силовые линии поочередно пересекают фазные витки и наводят в них ЭДС взаимоиндукции, в результате чего на клеммных выводах возникает напряжение.

Частота получаемого напряжения напрямую зависит от скорости вращения вала и вычисляется по формуле:

f = (n*p)/60 ,

где n – скорость вращения вала, измеряемая в оборотах за минуту, p – количество пар полюсов.

Синхронный компенсатор

В виду физических особенностей синхронного электродвигателя при холостом ходе аппарата он потребляет из сети реактивную мощность, что позволяет существенно улучшить cosφ системы, практически приближая его к 1.На практике режим синхронного компенсатора используется как для улучшения коэффициента мощности, так и для стабилизации параметров напряжения сети.

Двигательный режим

В синхронной машине двигательный режим осуществляется при подаче рабочего трехфазного напряжения на обмотки якоря. После чего электромагнитное поле якоря начинает толкать магнитное поле ротора, и вал приходит во вращение. Однако на практике двигательный режим осуществляется не так просто, так как мощные агрегаты не могут самостоятельно набрать необходимый ресурс скорости. Поэтому во время запуска используют специальные методы и схемы подключения.

Способы пуска и схемы подключения

Для запуска синхронного электродвигателя требуется дополнительное поле, независимое от воздействия сети. В то же время, на стартовом этапе запуск представляет собой асинхронный процесс, пока агрегат не достигнет синхронной скорости.

Рис. 8. Схема пуска синхронного двигателя

При подаче напряжения на якорь возникает ток в его обмотках и генерация ЭДС в железе ротора, который обеспечивает асинхронное движение до того момента, пока не начнется питание обмоток возбуждения.

Еще одним распространенным вариантом пуска является использование дополнительных генераторов, которые могут располагаться на валу или устанавливаться отдельно. Такой метод обеспечивает дополнительное стартовое усилие за счет стороннего крутящего момента.

Рис. 9. Генераторный способ пуска синхронного двигателя

Как видите на рисунке 9, начальное вращение мотора М осуществляется за счет генератора G, который призван вывести устройство на подсинхронную скорость. Затем генератор выводится из рабочей цепи путем размыкания контактов КМ или автоматически при установке рабочих характеристик. Дальнейшее поддержание синхронного режима происходит за счет подачи постоянного напряжения в обмотку возбуждения.

Помимо этого на практике используется схема пуска с полупроводниковыми преобразователями. На рисунке 10 приведен способ тиристорного преобразователя и с установкой вращающихся выпрямителей.

Рис. 10. Тиристорная схема пуска синхронного двигателя

В первом случае запуск синхронного электродвигателя характеризуется нулевым напряжением от преобразователя UD. За счет ЭДС скольжения через стабилитроны VD осуществляется открытие тиристоров VS. В цепь обмотки возбуждения вводится резистор R, предназначенный для предотвращения пробоя изоляции. По мере разгона электродвигателя ЭДС скольжения пропорционально снизится и произойдет запирание стабилитронов VD, цепочка заблокируется, и обмотка возбуждения получит питание постоянным напряжением через UD.

Применение

Область применения синхронных электрических машин охватывает производство электрической энергии на электростанциях. По видам генераторы подразделяются на турбинные, дизельные и гидравлические, в зависимости от способа приведения их во вращение.

Также их используют в качестве электродвигателей, которые могут переносить существенные перегрузки в процессе эксплуатации. Такие двигатели устанавливаются на вентиляторах, компрессорах, силовых агрегатах и прочем оборудовании. Отдельная категория электродвигателей применяется в точном оборудовании, где важна синхронизация операций и процессов.

Преимущества и недостатки

К преимуществам такого электродвигателя следует отнести:

Среди недостатков синхронных электродвигателей выделяют:

Видео версия

Принцип действия синхронного двигателя

Прежде чем рассматривать принцип действия синхронного двигателя, необходимо помнить, что это электрическая машина, работающая на переменном токе, у которой ротор вращается с частотой, которая равна частоте вращения магнитного поля в воздушной прослойке.

  1. Устройство синхронного двигателя
  2. Как работает синхронный двигатель
  3. Схема запуска двигателя и его регулировка
  4. Различия синхронных и асинхронных двигателей

Устройство синхронного двигателя

Синхронный двигатель состоит из основных частей – якоря и индуктора. Обычно, его исполнение сделано таким образом, что якорь расположен на статоре, а индуктор – на роторе, отделенном воздушной прослойкой. Данные агрегаты обладают высоким коэффициентом мощности. Существенным плюсом является возможность их использования в сетях с любым напряжением.

Конструкция синхронного двигателя состоит из двух основных частей – статора и ротора. Статор является неподвижной частью агрегата, а ротор – подвижной. В состав якоря входят одна или несколько обмоток переменного тока. При работе двигателя токи, поступающие в якорь, приводят к вращению магнитного поля, пересекающегося с полем индуктора и преобразующего энергию. Поле якоря носит другое название – поле реакции якоря. В генераторе такое поле создается с помощью индуктора.

В состав индуктора входят электромагниты постоянного тока, называемые полюсами. Во всех синхронных электродвигателях индукторы бывают двух конструкций – явнополюсная и не явнополюсная, отличающиеся расположением полюсов. Конструкция статора включает в себя корпус и сердечник, в состав которого входят двух- и трехфазные обмотки. Сами обмотки могут быть распределенными и сосредоточенными.

Чтобы уменьшить магнитное сопротивление и улучшить прохождение магнитного потока, используются ферромагнитные сердечники, расположенные в роторе и статоре, для изготовления которых используется электротехническая сталь. Она обладает интересными свойствами, например, повышенным содержанием кремния, с целью повышения ее электрического сопротивления и уменьшения вихревых токов.

Каждый синхронный электродвигатель обладает важным параметром – электромагнитным моментом. Он возникает в том случае, когда магнитный поток ротора начинает взаимодействовать с вращающимся магнитным полем. Данное поле образуется под влиянием трехфазного тока, протекающего по обмотке якоря.

В режиме холостого хода происходит совпадение осей магнитных полей ротора и статора. Поэтому электромагнитные силы, возникающие между их полюсами, принимают радиальное направление и значение электромагнитного момента агрегата становится равным нулю. При переходе устройства в двигательный режим, на ротор начинает воздействовать внешние нагрузочный момент, приложенный к валу. В результате, происходит смещение ротора на величину определенного угла против направления вращения.

Подобное электромагнитное взаимодействие между ротором и статором приводит к созданию электромагнитных сил, направленных в сторону вращения. Таким образом, действие вращающегося электромагнитного момента стремится к преодолению действия внешнего момента. Максимальное значение электромагнитного момента образует угол 90 градусов, при расположении полюсов ротора между осями полюсов статора.

Если значение нагрузочного момента, приложенного к валу двигателя, превысит максимальный электромагнитный момент, в этом случае двигатель остановится под влиянием внешнего момента. Из-за этого в неподвижном двигателе по обмотке якоря будет проходить очень высокий ток. Данный режим является аварийным, он представляет собой выпадение из синхронизма и на практике не должен допускаться.

Как работает синхронный двигатель

Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой – на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.

При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается магнитное поле. Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.

При разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.

Таким образом, синхронный двигатель это не только двигатель, но и своеобразный генератор, поскольку у них одинаковое конструктивное исполнение. Схема работы двигателя будет следующей. Обмотка якоря подключается к трехфазному переменному току, а к обмотке возбуждения от постороннего источника подается постоянный ток. Вращающееся магнитное поле, созданное трехфазной обмоткой и поле, созданное обмоткой возбуждения, взаимодействуют между собой. Это вызывает появление электромагнитного момента, приводящего ротор во вращающееся состояние.

Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели. В отличие от асинхронных устройств, разгон ротора в синхронном двигателе должен достигнуть частоты вращения магнитного поля. Это связано с подачей в обмотку ротора тока из постороннего источника, а не индуцируется в нем под действием магнитного поля статора, следовательно, на него не влияет частота вращения вала. В результате, синхронный двигатель переменного тока приобретает постоянную частоту вращения ротора вне зависимости от нагрузки. Специфический принцип работы этих устройств оказал влияние на их пуск и регулировку частоты вращения.

Схема запуска двигателя и его регулировка

У синхронных двигателей отсутствует начальный пусковой момент. При подключении якорной обмотки к источнику переменного тока, электромагнитный момент дважды изменить свое направление за один период изменения тока. Это происходит, когда ротор находится в неподвижном состоянии, а в обмотке возбуждения протекает постоянный ток.

Читайте также:  Сборка и установка теплицы своими руками из профиля, обзор оцинкованных, алюминиевых каркасов под пленку и поликарбонат, фото теплиц из металлопрофиля

Таким образом, величина среднего момента в течение одного периода будет иметь нулевое значение. Чтобы увидеть, как работает синхронный двигатель при пуске, нужно выполнить разгон его ротора под действием внешнего момента до вращения с частотой, приближенной к синхронной.

Сам запуск агрегата может производиться разными способами:

Различия синхронных и асинхронных двигателей

Все электродвигатели переменного тока по принципу действия могут быть асинхронными и синхронными. В первом случае вращение ротора будет медленнее, по сравнению с магнитным полем, а во втором – вращение ротора и магнитного поля происходит с одинаковой скоростью.

В асинхронном двигателе вращающееся переменное магнитное поле создается обмотками, закрепленными на статоре. Концы этих обмоток выведены в общую клеммную коробку. Во избежание перегрева на валу двигателя устанавливается вентилятор. Ротор выполнен из металлических стержней, замкнутых с двух сторон между собой. Он представляет единое целое с валом и получил название короткозамкнутого ротора.

Вращение магнитного поля происходит под действием постоянной смены полюсов. Соответственно, в обмотках изменяется направление тока. На скорость вращения вала оказывает влияние количество полюсов магнитного поля.

Синхронный электродвигатель конструктивно отличается от асинхронных агрегатов. Здесь вращение ротора и магнитного поля происходит с одинаковой скоростью. Напряжение на ротор для зарядки обмоток подается с помощью щеток, а не индуцируется действием переменного магнитного поля. Направление тока в обмотках изменяется одновременно с направлением магнитного поля, поэтому вал синхронного двигателя всегда вращается в одну сторону.

Принцип работы синхронного двигателя

Принцип работы синхронного двигателя

В целом, электрический двигатель представляет собой электромеханическое устройство, которое преобразовывает электрическую энергию в механическую.

По типу подключения двигатели бывают однофазные и 3-х фазные. Среди 3-х фазных двигателей наиболее распространенными являются индукционные (асинхронные) и синхронные электродвигатели.

Когда в 3-х фазном двигателе электрические проводники располагаются в определенном геометрическом положении (под определенным углом относительно друг друга), возникает электрическое поле. Образованное электромагнитное поле вращается с определенной скоростью, которая называется синхронной скоростью.

Если в этом вращающемся магнитном поле присутствует электромагнит, он магнетически замыкается с этим вращающимся полем и вращается со скоростью этого поля. Фактически, это нерегулируемый двигатель, поскольку он имеет всего одну скорость, которая является синхронной, и никаких промежуточных скоростей там быть не может. Другими словами, он работает синхронно с частотой сети.

Ниже дана формула синхронной скорости:

Строение синхронного двигателя

Его строение практически аналогично 3-фазному асинхронному двигателю, за исключением того факта, что на ротор подается источник постоянного тока.

На рисунке показано устройство этого типа двигателя. На статор подается 3-х фазное напряжение, а на ротор – источник постоянного тока.

Строение синхронного двигателя

Основные свойства синхронных двигателей:

Видео: Строение и принцип работы синхронного двигателя

Принципы работы синхронного двигателя

Электронно-магнитное поле синхронного двигателя обеспечивается двумя электрическими вводами. Это обмотка статора, которая состоит из 3-х фаз и предусматривает 3 фазы источника питания и ротор, на который подается постоянный ток.

3 фазы обмотки статора обеспечивают вращение магнитного потока. Ротор принимает постоянный ток и производит постоянный поток. При частоте 50 Гц 3-х фазный поток вращается около 3000 оборотов в 1 минуту или 50 оборотов в 1 секунду. В определенный момент полюса ротора и статора могут быть одной полярности (++ или – – ), что вызывает отталкивания ротора. После этого полярность сразу же меняется (+–), что вызывает притягивание.

Но ротор по причине своей инерции не в состоянии вращаться в любом направлении из-за силы притяжения или силы отталкивания и не может оставаться в состоянии простоя. Он не самозапускающийся.

Чтобы преодолеть инерцию силы, необходимо определенное механическое воздействие, которое вращает ротор в том же направлении, что и магнитное поле, обеспечивая необходимую синхронную скорость. Через некоторое время происходит замыкание магнитного поля, и синхронный двигатель вращается с определенной скоростью.

Способы запуска

Применение

Устройство и принцип действия синхронного двигателя

Отличие от асинхронного мотора

Главное отличие синхронной машины заключается в том, что скорость вращения якоря такая же, как и аналогичная характеристика магнитного потока.

И если в асинхронных моторах используется короткозамкнутый ротор, то в синхронных имеется на нем проволочная обмотка, к которой подводится переменное напряжение.

В некоторых конструкциях используются постоянные магниты. Но это делает двигатель дороже.

Если увеличивать нагрузку, подключаемую к ротору, частота вращения его не изменится. Это одна из ключевых особенностей такого типа машин. Обязательное условие – у движущегося магнитного поля должно быть столько же пар полюсов, сколько у электромагнита на роторе. Именно это гарантирует постоянную угловую скорость вращения этого элемента двигателя. И она не будет зависеть от момента, приложенного к нему.

Конструкция мотора

Устройство и принцип действия синхронных двигателей несложны.

Конструкция включает в себя такие элементы:

  1. Неподвижная часть – статор. На ней находится три обмотки, которые соединяются по схеме «звезда» или «треугольник». Статор собран из пластин электротехнической стали с высокой степенью проводимости.
  2. Подвижная часть – ротор. На нем тоже имеется обмотка. При работе на нее подается напряжение.

Между ротором и статором имеется прослойка воздуха. Она обеспечивает нормальное функционирование двигателя и позволяет магнитному полю беспрепятственно воздействовать на элементы агрегата. В конструкции присутствуют подшипники, в которых вращается ротор, а также клеммная коробка, расположенная в верхней части мотора.

Как работает двигатель

Если кратко, принцип действия синхронного двигателя, как и любого другого, заключается в преобразовании одного вида энергии в другой. А конкретно – электрической в механическую. Работает мотор таким образом:

  1. На статорные обмотки подается переменное напряжение. Оно создает магнитное поле.
  2. На обмотки ротора также подается переменное напряжение, создающее поле. Если используются постоянные магниты, то это поле уже по умолчанию имеется.
  3. Два магнитных поля взаимопересекаются, противодействуют друг другу – одно толкает другое. Из-за этого двигается ротор. Именно он установлен на шарикоподшипниках и способен свободно вращаться, дать ему нужно только толчок.

Вот и все. Теперь остается только использовать полученную механическую энергию в нужных целях. Но требуется знать, как правильно вывести в нормальный режим синхронный двигатель. Принцип работы у него отличается от асинхронного. Поэтому требуется придерживаться определенных правил.

Для этого электродвигатель подключают к оборудованию, которое необходимо привести в движение. Обычно это механизмы, которые должны работать практически без остановок – вытяжки, насосы и прочее.

Синхронные генераторы

Обратная конструкция – синхронные генераторы. В них процессы протекают немного иначе. Принцип действия синхронного генератора и синхронного двигателя отличаются, но не существенно:

  1. На обмотку статора не подается напряжение. С нее оно снимается.
  2. На обмотку ротора подается переменное напряжение, которое необходимо для создания магнитного поля. Потребление электроэнергии крайне маленькое.
  3. Ротор электрогенератора раскручивается при помощи дизельного или бензинового двигателя либо же силой воды, ветра.
  4. Вокруг ротора имеется магнитное поле, которое двигается. Поэтому в обмотке статора индуцируется ЭДС, а на концах появляется разность потенциалов.

Но в любом случае требуется стабилизировать напряжение на выходе генераторной установки. Для этого достаточно запитать роторную обмотку от источника, напряжение которого постоянно и не изменяется при колебаниях частоты вращения.

Полюсы обмоток двигателя

В конструкции ротора имеются постоянные или электрические магниты. Их обычно называют полюсами. На синхронных машинах (двигателях и генераторах) индукторы могут быть двух типов:

  1. Явнополюсными.
  2. Неявнополюсными.

Они различаются между собой только взаимным расположением полюсов. Для уменьшения сопротивления со стороны магнитного поля, а также улучшения условий для проникновения потока, используются сердечники, изготовленные из ферромагнетиков.

Эти элементы располагаются как в роторе, так и в статоре. Для изготовления используются только сорта электротехнической стали. В ней очень много кремния. Это отличительная особенность такого вида металла. Это позволяет существенно уменьшить вихревые токи, повысить электрическое сопротивление сердечника.

Воздействие полюсов

В основе конструкции и принципа действия синхронных двигателей лежит обеспечение влияния пар полюсов ротора и статора друг на друга. Для обеспечения работы нужно разогнать индуктор до определенной скорости. Она равна той, с которой вращается магнитное поле статора. Именно это позволяет обеспечить нормальную работу в синхронном режиме. В момент, когда происходит запуск, магнитные поля статора и ротора взаимно пересекаются. Это называется «вход в синхронизацию». Ротор начинает вращаться со скоростью, как у магнитного поля статора.

Запуск электродвигателей синхронного типа

Самое сложное в работе синхронного мотора – это его запуск.

Именно поэтому его используют крайне редко. В

едь конструкция усложняется за счет системы запуска.

На протяжении долгого времени работа синхронного двигателя зависела от разгонного асинхронника, механически соединенным с ним.

Что это значит? Второй тип двигателя (асинхронный) позволял разогнать ротор синхронной машины до подсинхронной частоты.

Обычные асинхронники не требуют специальных устройств для запуска, достаточно только подать рабочее напряжение на обмотки статора.

После того, как будет достигнута требуемая скорость, происходит отключение разгонного двигателя. Магнитные поля, которые взаимодействуют в электрическом моторе, сами выводят его на работу в синхронном режиме. Для разгона потребуется другой двигатель. Его мощность должна составлять примерно 10-15 % от аналогичной характеристики синхронной машины. Если нужно вывести в режим электродвигатель 1 кВт, для него потребуется разгонный мотор мощностью 100 Вт. Этого вполне достаточно, чтобы машина смогла работать как в режиме холостого хода, так и с незначительной нагрузкой на валу.

Более современный способ разгона

Стоимость такой машины оказывалась намного выше. Поэтому проще использовать обычный асинхронный мотор, пусть и много у него недостатков. Но именно его принцип работы и был использован для уменьшения габаритов и стоимости всей установки. При помощи реостата производится замыкание обмоток на роторе. В итоге двигатель становится асинхронным. А запустить его оказывается намного проще – просто подается напряжение на обмотки статора.

Во время выхода на подсинхронную скорость возможно раскачивание ротора. Но это не происходит за счет работы его обмотки. Напротив, она выступает в качестве успокоителя. Как только частота вращения будет достаточной, производится подача постоянного напряжения на обмотку индуктора. Двигатель выводится в синхронный режим. Но такой способ можно воплотить только в том случае, если используются моторы с обмоткой на роторе. Если там применяется постоянный магнит, придется устанавливать дополнительный разгонный электродвигатель.

Преимущества и недостатки синхронных моторов

Основное преимущество (если сравнивать с асинхронными машинами) – за счет независимого питания роторной обмотки агрегаты могут работать и при высоком коэффициенте мощности. Также можно выделить такие достоинства, как:

  1. Снижается ток, потребляемый электродвигателем, увеличивается КПД. Если сравнивать с асинхронным мотором, то эти характеристики у синхронной машины оказываются лучше.
  2. Момент вращения прямо пропорционален напряжению питания. Поэтому даже если снижается напряжение в сети, нагрузочная способность оказывается намного выше, нежели у асинхронных машин. Надежность устройств такого типа существенно выше.

Но вот имеется один большой недостаток – сложная конструкция. Поэтому при производстве и последующих ремонтах затраты окажутся выше. Кроме того, для питания обмотки ротора обязательно требуется наличие источника постоянного тока. А регулировать частоту вращения ротора можно только с помощью преобразователей – стоимость их очень высокая. Поэтому синхронные моторы используются там, где нет необходимости часто включать и отключать агрегат.

Принцип действия синхронной машины

Назначение.

Синхронные машины используют в качестве генераторов и двигателей. Синхронные генераторы вырабатывают электрическую энергию трехфазного тока. Почти все генераторы переменного тока, устанавливаемые на больших и малых электрических станциях, являются синхронными. Синхронные двигатели используют, главным образом, для мощных электрических приводов.

Синхронные генераторы применяют на тепловозах с электрической передачей переменно-постоянного тока: напряжение, полученное от синхронного генератора, выпрямляется полупроводниковыми преобразователями и подается на тяговые двигатели постоянного тока

Устройство

Основными частями синхронной машины являются якорь и индуктор (обмотка возбуждения). Как правило, якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор – таким образом, по принципу действия синхронная машина представляет собой как бы «вывернутую наизнанку» машину постоянного тока, переменный ток для обмотки якоря которой получается нес помощью коллектора, а подводится извне.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов -электромагнитов постоянного тока или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную.

Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока.

При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, не заполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока, применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную (набранную из отдельных листов) конструкцию из электротехнической стали, имеющей повышенное содержание кремния, что повышает её электрическое сопротивление и уменьшает тем самым вихревые токи.

Принцип действия.

Статор 1 синхронной машины (рис. 6.1, а) выполнен так же, как и асинхронной: на нем расположена трехфазная (в общем случае многофазная) обмотка 3. Обмотку ротора 4, питаемую от источника постоянного тока, называют обмоткой возбуждения, так как она создает в машине магнитный поток возбуждения.

Читайте также:  Сделать дом уютнее: дополнения к дизайну и идеи для придания комфорта своему жилищу
Рис. 6.1. Электромагнитная схема синхронной машины и схема её включения

Вращающуюся обмотку ротора соединяют с внешним источником постоянного тока посредством контактных колец 5 и щеток 6 (рис. 6.1, б). При вращении ротора 2 с некоторой частотой n2 поток возбуждения пересекает проводники обмотки статора и индуцирует в ее фазах переменную ЭДС Е, изменяющуюся с частотой

Если обмотку статора подключить к какой-либо нагрузке, то проходящий по этой обмотке многофазный ток Iа создает вращающееся магнитное поле, частота вращения которого

Из (6.1) и (6.2) следует, что n1 = n2, т. е. что ротор вращается с той же частотой, что и магнитное поле статора. Поэтому рассматриваемую машину называют синхронной. Результирующий магнитный поток Фрез синхронной машины создается совместным действием МДС обмотки возбуждения и обмотки статора, и результирующее магнитное поле вращается в пространстве с той же частотой, что и ротор.

В синхронной машине обмотку, в которой индуцируется ЭДС и проходит ток нагрузки, называют обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения,- индуктором. Следовательно, в приведенной машине (рис. 6.1) статор является якорем, а ротор – индуктором. Для принципа действия и теории работы машины не имеет значения – вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной конструктивной схемой: обмотку якоря, к которой подключают нагрузку, располагают на роторе, а обмотку возбуждения, питаемую постоянным током, – на статоре. Такую машину называют обращённой. Обращенные машины имеют сравнительно небольшую мощность, так как у них затруднен отбор мощности от обмотки ротора.

Синхронная машина может работать автономно в качестве генератора, питающего подключенную к ней нагрузку, или параллельно с сетью, к которой присоединены другие генераторы. При работе параллельно с сетью она может отдавать или потреблять электрическую энергию, т. е. работать генератором или двигателем. При подключении обмотки статора к сети с напряжением U и частотой f1 проходящий по обмотке ток создает, так же как в асинхронной машине, вращающееся магнитное поле, частота вращения которого определяется по (6.2). В результате взаимодействия этого поля с током Iв, проходящим по обмотке ротора, создается электромагнитный момент М, который при работе машины в двигательном режиме является вращающим, а при работе в генераторном режиме – тормозным. В рассматриваемой машине в отличие от асинхронной поток возбуждения (холостого хода) создается обмоткой постоянного тока, расположенной обычно на роторе. В установившемся режиме ротор неподвижен относительно магнитного поля и вращается с частотой вращения п1 = п2 независимо от механической нагрузки на валу ротора или электрической нагрузки.

Таким образом, для установившихся режимов работы синхронной машины характерны следующие особенности:

а) ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой, равной частоте вращающегося магнитного поля, т. е. п2 = п1;

б) частота изменения ЭДС Е, индуцируемой в обмотке якоря, пропорциональна частоте вращения ротора;

в) в установившемся режиме ЭДС в обмотке возбуждения не индуцируется; МДС этой обмотки определяется только током возбуждения и не зависит от режима работы машины.

Как всякая электромашина, синхронная машина может работать в режимах двигателя и генератора.

Генераторный режим

Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3. 2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений.

Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 120°, индуцируется синусоидальная ЭДС. Соединяя фазы по стандартным схемам «треугольник» или «звезда», на выходе генератора получают трехфазное напряжение, являющееся общепринятым стандартом для магистральных электросетей.

Частота индуцируемой ЭДС f [Гц] связана с частотой вращения ротора n [об/мин] соотношением:

,

где – число пар полюсов ротора.

Часто синхронные генераторы используют вместо коллекторных машин для генерации постоянного тока, подключая их обмотки якоря к трехфазным выпрямителям.

Двигательный режим

Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор – на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щётка-кольцо), в маломощных, к примеру, в двигателях жёстких дисков- постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор – на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)

Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора (если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора)- это явление называется «вход в синхронизм».

Для разгона обычно используется асинхронный режим, при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей “раскачивание” ротора при синхронизации. После выхода на скорость, близкую к номинальной (>95% – так называемая подсинхронная скорость), индуктор запитывают постоянным током.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель либо частотно-регулируемый пуск, также частотное регулирование применяют на всех типах СД в рабочем режиме – например, на тяговых двигателях скоростного электропоезда TGV. Двигатели старых электропроигрывателей требовали ручного пуска – прокрутки пластинки рукой, позже в проигрывателях стали применяться асинхронные двигатели.

Иногда на валу крупных машин ставят небольшой генератор (постоянного тока или переменного тока с выпрямлением), т.н. «возбудитель», который питает электромагниты.

Частота вращения ротора n [об/мин] остаётся неизменной, жёстко связанной с частотой сети f [Гц] соотношением:

,

где – число пар полюсов ротора, в зависимости от нагрузки машины меняется лишь угол нагрузки (угол тета) -электрический угол отставания или опережения поля возбуждения по отношению к полю якоря. При угле нагрузки более 90 электрических градусов машина выпадает из синхронизма – останавливается, если вал перегружен тормозным моментом, либо уходит на повышенные обороты, если машина работает в режиме генератора и недогружена электрической нагрузкой.

Синхронные двигатели при изменении возбуждения меняют косинус фи с ёмкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт (воздуходувки, водоперекачивающие и нефтеперекачивающие насосы), к примеру, типа СТД, при меньших мощностях обычно применяется более простой (и надежный) асинхронный двигатель с короткозамкнутым ротором.

23.Устройство, принцип работы синхронной машины.

Основные отличия

В основном синхронные и асинхронные двигатели мало чем отличаются друг от друга. Ключевым отличием первых моделей является то, что вращение якоря осуществляется с такой же скоростью, как и вращение магнитного потока. При этом внутри установки встроена проволочная обмотка, передающая переменное напряжение, а не короткозамкнутый ротор, как у асинхронных устройств. Также отдельные конструкции оборудованы постоянными магнитами, но они существенно повышают стоимость двигателя.

При увеличении нагрузки скорость вращения ротора остается прежней. Именно такая особенность характеризует эту разновидность силовых установок. Ключевое требование к таким машинам выглядит следующим образом: количество полюсов у движущегося магнитного поля должно соответствовать числу полюсов электромагнита на роторе.

Принцип действия и устройство электромашин разных типов

Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.

Устройство и принцип действия асинхронных электродвигателей

Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:

В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».

Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.

Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.

Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 – синхронная скорость; · n2 – скорость вращения ротора.

на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.

В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.

Конструкция синхронного устройства

Принцип работы и устройство синхронных машин остаются понятными даже для неопытных потребителей. К ключевым составляющим системы относят следующие узлы:

  1. Статор — представляет собой неподвижную часть установки, на которой расположено три обмотки. Они соединены по схеме «звезда» или «треугольник». В качестве материала для изготовления статора используются пластины из суперпрочной электротехнической стали.
  2. Ротор — подвижный элемент двигателя, оснащенный обмоткой. Во время работы установки эта обмотка пропускает определенное напряжение.

Между зафиксированной и подвижной частью системы находится небольшая воздушная прослойка, гарантирующая сбалансированную работу мотора и беспрепятственное воздействие магнитного поля на ключевые составляющие агрегата. Также в двигателе установлены подшипники, необходимые для вращения ротора, и клеммная коробка. Последняя находится в верхней части механизма.

Как работают синхронные машины?

Магнитное поле в синхронной машине создается постоянным током, протекающим по обмотке возбуждения. Потребность в ис­точнике постоянного тока для питания обмотки возбуждения – очень существенный недостаток синхронных машин.


Схема синхронного генератора.

Обычно обмотки возбуждения получают энергию от генератора постоянного тока параллельного возбуждения (возбудите­ля), находящегося на одном валу с основной машиной.

Его мощность составляет 1-5% мощности синхронной машины. При небольшой мощности широко используются схемы питания обмоток возбуждения синхронных машин из сети переменного тока через выпрямители.

Принцип действия синхронного генерато­ра основан на использовании закона элек­тромагнитной индукции. На рис. 1 пока­зана простейшая трехфазная обмотка, со­стоящая из трех катушек, сдвинутых на 120° и помещенная на роторе (якоре).

Рисунок 1. Принцип действия синхронного генератора.

Ка­тушки соединяют между собой в звезду или треугольник и подключают к трем контакт­ным кольцам, на которых помещают неподвижные щетки. В катушках при вращении якоря индуктируются переменные во времени ЭДС, равные по амплитуде и сдвинутые по фазе на 2/3.

Современные синхронные генераторы изготавливают на линей­ное напряжение до 16000 В (иногда и выше), изоляция контактных колец и щеток которых представляет собой большую сложность. Основной недостаток такой конструкции – наличие скользящего контакта в цепи основной мощности машины. Для его исключения обмотку якоря, т. е. индуктируемую часть, помещают на статоре, а полюсную систему с обмоткой возбуждения – на роторе машины.

Обмотка возбуждения получает питание через контактные коль­ца. В этом случае скользящий контакт находится в цепи малой мощности и напряжение в цепи обмотки возбуждения относительно невелико (не более 500 В).

Статор синхронной машины имеет такое же устройство, как и статор асинхронной машины.

В зависимости от устройства ротора, различают две конструкции синхронных машин:


Рисунок 2. Схема устройства ротора с явновыраженными (а) и неявновыраженными (б) полюсами.

В машинах с относительно малой частотой вращения роторы выполняют с явновыраженными полюсами. На роторе (рис. 2 а)

равномерно помещают явновыраженные полюсы, состоящие из по­люсного сердечника
1
, на котором расположена катушка обмотки возбуждения
3
, удерживаемая полюсным наконечником
2.
Такое устройство ротора облегчает выполнение обмотки возбуждения, но при большой частоте вращения не может быть использовано, так как не обеспечивает нужной механической прочности.

Поэтому при большой частоте вращения роторы выполняют с неявновыраженными полюсами (рис. 2 б).

Такой ротор изго­тавливают в виде цилиндра, на части поверхности которого имеются пазы. В пазах укладывают проводники обмотки возбуждения, за­тем пазы заклинивают и лобовые соединения обмотки возбуждения стягивают стальными бандажами.

В зависимости от рода первичного двигателя, которым приво­дится во вращение синхронный генератор, последний называют гидрогенератором (первичный двигатель – гидравлическая турби­на), турбогенератором (первичный двигатель – паровая турбина) и дизель-генератором (первичный двигатель – дизель).


Конструктивная схема синхронной машины с неподвижным и вращающимся якорем.

Гидрогене­раторы – обычно тихоходные явнополюсные машины с большим числом полюсов, выполняемые с вертикальным расположением вала. Турбогенераторы – быстроходные неявнополюсные машины, выполняемые в настоящее время с двумя полюсами. Ротор современного турбогенератора делают из цельной стальной поковки. На части поверхности ротора выфрезованы пазы для размещения обмотки возбуждения. Дизель-генераторы – явнополюсные машины с горизонтальным расположением вала.

Синхронные машины небольшой мощности (до 15 кВА) и не­высокого напряжения (до 380/220 В) изготавливают с неподвижной полюсной системой и вращающимся якорем (подобно машинам постоянного тока). Синхронный двигатель не имеет принципиаль­ных конструктивных отличий от синхронного генератора. На стато­ре двигателя помещают трехфазную обмотку, при включении кото­рой в сеть трехфазного переменного тока создается вращающееся магнитное поле. На роторе двигателя размещают обмотку возбуж­дения, включаемую в сеть источника постоянного тока.

Ток возбуж­дения создает магнитный поток полюсов. Вращающееся магнитное поле токов обмотки статора увлекает за собой полюсы ротора. При этом ротор может вращаться только с синхронной частотой, т. е. с частотой, равной частоте вращения поля статора. Таким образом, частота синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.

Основное достоинство синхронных двигателей – возможность их работы с потреблением опережающего тока, т. е. двигатель мо­жет представлять собой емкостную нагрузку для сети. Такой дви­гатель повышает cos всего предприятия, компенсируя реактив­ную мощность других приемников энергии.

Синхронные двигатели имеют меньшую, чем у асинхронных, чувствительность к изменению напряжения питающей сети, вра­щающий момент у синхронных двигателей пропорционален напря­жению сети в первой степени, тогда как у асинхронных — квадрату напряжения.

Принцип работы

Изучая принцип работы синхронного двигателя, важно понимать, что, как и остальные разновидности силовых установок, они преобразуют один тип энергии в другой. Простыми словами, встроенные механизмы делают из электрической энергии механическую, а вся работа происходит по такому алгоритму:

  1. Сквозь обмотку на статоре пропускается переменное напряжение, в результате чего происходит образование магнитного поля.
  2. Затем аналогичное напряжение подается на роторные обмотки, что тоже создает магнитное поле. При наличии в конструкции постоянных магнитов такое поле имеется по умолчанию.
  3. При столкновении двух магнитных полей происходит их противодействие друг другу, т. е. одно толкает другое. Именно такой принцип вызывает передвижение ротора, помещенного на подшипники.

Зная, как устроен и работает синхронный двигатель, остается правильно распределить его энергию и использовать в нужных целях. Однако производительность и КПД системы будут максимальными только в том случае, если удастся вывести ее в нормальный режим работы.

Принцип работы СГ

Принцип действия машины в режиме синхронного генератора:

  1. При пропускании через обмотку возбуждения постоянного тока образуется стабильное во времени магнитное поле с чередующейся полярностью.
  2. При вращении магнитного поля относительно проводников обмотки якоря возбуждаются переменные ЭДС.
  3. Переменные ЭДС суммируются, образуя ЭДС фаз. Трехфазная система образуется тремя одинаковыми обмотками, размещаемыми на якоре под электрическим углом друг к другу, равным 120°.
Читайте также:  Обследование тепловизором: анализ данных тепловизионного исследования дома, стоимость процедуры

В случаях, если централизованное электроснабжение имеет недостаточную мощность или отсутствует, как, например, на удаленных стройплощадках, нефтегазодобывающих объектах, морских и воздушных судах, СГ в составе с двигателем внутреннего сгорания функционируют в автономном режиме. При необходимости создания мощных источников питания синхронные двигатели включают на параллельную работу. Такой способ включения позволяет более полно использовать мощность каждой машины и при необходимости выводить отдельные СГ в ремонт без прекращения эффективного электроснабжения потребителей.

Второй режим работы синхронной машины — выполнение функций электродвигателя. Обычно СГ востребован в качестве двигателя в высокомощных установках более 50 кВт. Для работы в режиме электродвигателя обмотку статора подключают к электросети, а обмотку ротора — к источнику постоянного тока. Вращающий момент возникает при взаимодействии вращающегося магнитного поля СГ с постоянным током обмотки возбуждения.

Устройство генераторов

Существует обратный вариант синхронных двигателей — синхронные генераторы. Они работают немного иначе:

  1. Обмотка неподвижного статора не пропускает напряжение. Наоборот, с нее оно снимается.
  2. Сквозь роторную обмотку подается переменное напряжение, при этом расход электрической энергии совсем небольшой.
  3. Движение генератора обусловлено дизельным или бензиновым двигателем. Также его может раскручивать сила воды или ветра.
  4. В статорной обмотке происходит индукция ЭДС, а на концах появляется разность потенциала. Это объясняется движущимся магнитным полем вокруг ротора.

Но в любом случае необходимо осуществить стабилизацию напряжения на выходе генератора. Это делается соединением роторной обмотки с источником напряжения.

В зависимости от конструктивных особенностей ротор может быть оборудован постоянными или электрическими магнитами или так называемыми полюсами. Что касается индукторов, то в синхронных установках они бывают:

  1. Явнополюсными.
  2. Неявнополюсными.

Отличаются эти типы друг от друга только взаимным расположением полюсов. Чтобы снизить сопротивление магнитного поля и улучшить проникновение тока, механизм оснащают сердечниками, которые выполнены из ферромагнетиков. Сердечники находятся и в роторе, и в статоре, а для их изготовления задействуется исключительно электротехническая сталь. Дело в том, что этот материал содержит в себе большое количество кремния, существенно снижающего вихревые токи и улучшающего электрическое сопротивление сердечника.

Синхронный двигатель

Этот тип двигателя способен работать одновременно и в качестве генератора, и как, собственно, двигатель. Его устройство сродни синхронному генератору. Характерной особенностью двигателя является неизменяемая частота роторного вращения от нагрузки.

Эти виды двигателей широко применяются во многих сферах, например, для электрических проводов, которым необходима постоянная скорость.


Смотреть галерею

Запуск установки

При использовании синхронных двигателей возникает масса трудностей на этапе их запуска. Из-за этого они не пользуются особой популярностью и уступают асинхронным вариантам.

С момента появления на рынке работа синхронных агрегатов обеспечивалась специальным асинхронником, который механически соединялся с остальными узлами. По сути, ротор разгонялся до нужной частоты с помощью второго типа моторов. Современные асинхронники не нуждаются в подключении дополнительных механизмов, и все, что требуется для их работы, — соответствующее напряжение для статорной обмотки.

Как только система обеспечит нужную скорость вращения, разгонный двигатель будет отключен. При этом магнитные поля из электрического мотора выведут его на работу в синхронном режиме. Чтобы разогнать установку, придется задействовать еще один мотор мощностью 10% от мощности синхронного двигателя. При разгоне электродвигателя на 1 кВт используют разгонную систему мощностью 100 Вт. Как утверждают специалисты, таких показателей вполне хватает для сбалансированной работы машины в холостом режиме или с небольшой нагрузкой.

Асинхронный двигатель

Данный вид устройста представляет механизм, направленный на трансформацию электрической энергии переменного тока в механическую. Из самого названия «асинхронный» можно сделать вывод, что речь идет о неодновременном процессе. И действительно, частота вращения магнитного поля статора здесь выше роторной всегда. Такое устройство состоит из статора цилиндрической формы и ротора, в зависимости от вида которого асинхронные двигатели короткозамкнутые могут быть и с фазным ротором.


Смотреть галерею

Сферы применения

Синхронный электродвигатель представляет собой важное изобретение для различных направлений промышленности. Но из-за сложной конструкции и высокой стоимости оборудования его используют в редких случаях.

Сферы применения электрических моторов синхронного типа очень ограничены. В большинстве случаев установку применяют для повышения показателей мощности в энергосистеме, что обусловлено их способностью функционировать при любых коэффициентах мощности и отличной экономичностью.

Устройства востребованы для тех условий, где скорость вращения едва достигает 500 оборотов в минуту и появляется необходимость поднять мощность. В настоящее время их активно внедряют в поршневые насосы, компрессорные установки, прокатные станки и другие системы.

Синхронный и асинхронный двигатель отличия

Подписка на рассылку

Для приведения в движение различных станков или механизмов на предприятиях тяжелой и легкой промышленности в большинстве случаев используются электродвигатели переменного тока. Электрические машины постоянного тока распространены в меньшей мере и чаще всего применяются в качестве тяговых агрегатов на городском электротранспорте, поездах, складских погрузчиках и тележках.

Чтобы достичь максимальной энергоэффективности производственных процессов, нужно правильно подходить к выбору двигателя для привода.

Синхронный и асинхронный двигатель – отличия для чайников

Конструкция асинхронных и синхронных электрических машин практически одинакова. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Обмотки статора сдвинуты друг относительно друга на угол, равный 120°, поэтому проходящий по ним электрический ток создает вращающееся магнитное поле, которое вовлекает в движение ротор. Вот именно здесь и проявляется основное отличие этих электрических машин – конструкция ротора, от которой зависит скорость его вращения.

Асинхронный двигатель

Ротор такого двигателя может быть короткозамкнутым или фазным.

Вне зависимости от типа ротора в этих двигателях частота вращения ротора всегда будет меньше скорости вращения магнитного поля статора. Эта разница обусловлена законами физики:

Синхронный двигатель

Ротор таких двигателей комплектуется постоянными магнитами или обмотками возбуждения. Обмотки могут быть как явнополюсными, так и распределенными (уложенными в пазы ротора). Кроме того, ротор синхронной машины может иметь и короткозамкнутые обмотки.

После разгона ротора до скорости близкой к частоте вращения магнитного поля статора, на катушки полюсов через щеточно-контактный узел подается постоянное напряжение, которое возбуждает в них постоянное магнитное поле. Противоположные полюса магнитных полей притягиваются друг к другу и частота вращения ротора становится синхронной.

Разгон ротора может осуществляться с помощью вспомогательного двигателя или в асинхронном режиме, благодаря короткозамкнутой обмотке.

Недостатки и преимущества двигателей

Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.

Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе.

Принтер этикеток: как выбрать, лучшие модели

Если товар поступил в магазин без штрихкода или кода маркировки, перед продажей его нужно оценить и идентифицировать. Для этого в торговой точке используют принтер этикеток — устройство для печати штрихкодов, ценников и рекламной информации. C 2020 года принтер может пригодиться еще и для того, чтобы промаркировать товары кодами Data Matrix. Рассказываем, как выбрать принтер и не переплатить за лишние функции.

Что такое принтер этикеток

Принтер этикеток — устройство для оперативной маркировки товаров. Он позволяет нанести на этикетку любую нужную информацию: штрихкод, наименование, описание, состав, цену или артикул. Этикетка может быть клеящееся или в виде простого листочка.

В отличие от обычного лазерного, такой принтер печатает готовые этикетки. Не нужно вмещать ценники на листы А4 и вырезать их ножницами. Достаточно отделить от рулона и приклеить на упаковку, либо прикрепить на товарную полку.

Принтер этикеток печатает информацию о товаре и ценники на таких роликах. Этикетки из принтера сразу клеят на товар

Когда стоит купить принтер этикеток

Принтер этикеток нужен в розничном магазине, независимо от того, что там продается: продукты, одежда, цветы или готовые блюда. Вот основные случаи, когда без принтера не получится эффективной работы.

Идентифицировать товары без маркировки. В продуктовом магазине нужно маркировать хлеб, в рыболовном — крючки и грузила. Эти товары приходят в магазин без опознавательных знаков, а продаются каждый в отдельности. Сотрудникам магазина нужно нанести ценник со штрихкодом или этикетку на каждый такой товар.

Печатать ценники. Чаще всего магазину нужен специализированный принтер, когда у него большой ассортимент и регулярно меняются цены, проходят акции. Например, магазин одежды меняет коллекции раз в сезон и устраивает распродажи. На бирках платьев и обуви регулярно нужны новые цены и акции с перечеркнутой стоимостью.

Торговать в интернет-магазине. Сотрудники интернет-магазина маркируют товары на складе перед отправкой. На транспортной этикетке указывают, кому предназначен товар, куда его везти и как связаться с получателем. Вручную писать на каждом эту информацию долго, поэтому данные печатают на принтере и тут же наносят. Так заказы на складе может обслужить один человек.

Продавать весовой товар. Перед тем как продавать картошку или конфеты, их взвешивают и печатают на этикетке штрихкод, цену, наименование.

Формировать комплекты товаров. Если в магазине продают готовую еду, например шашлыки в контейнерах, на каждый нужно нанести этикетку. Там будет штрихкод, наименование, вес, состав и цена. Точно так же с букетами, которые собирают из цветов прямо в магазине — чтобы назначить цену такому комплекту, нужна этикетка.

Маркировать остатки кодами Data Matrix. С 2020 года обязательна маркировка товаров новыми кодами. Это относится к обуви, одежде, белью, шинам и фотоаппаратам. Если к началу обязательной маркировки у продавца остались товары без кодов, их придется заказывать через «Честный знак» или специальный сервис, печатать на принтере и наносить.

Владелец магазина может нанять человека, который это сделает, или купить принтер — в будущем он пригодится, например, при смене ценников.

Принтеры этикеток под любые нужды

Наши принтеры печатают этикетки для маркировки товаров, ценники, штрихкоды и рекламную информацию. Поставляем принтеры с термо- и термотрансферной печатью, для небольших магазинов и складов.

Выберите свой принтер для печати этикетки.

Критерии выбора принтера для печати этикеток

Размер этикетки. Они различаются по ширине. От принтера зависит, какую этикетку можно напечатать. Для большинства стационарных устройств максимум — 57 мм, а широкоформатные промышленные принтеры печатают этикетки до 204 мм в ширину.

Разрешение принтера. Оно измеряется в количестве точек на дюйм, или dots per inch — DPI. От разрешения зависит, что можно печатать на принтере: штрихкоды, QR-коды, изображения.

Чем меньше этикетка, тем выше DPI нужен. Стандартный штрихкод и логотип можно напечатать на принтере с 203 dpi. Для маленькой этикетки, например на пишущую ручку, нужно разрешение выше — 300-500 dpi. Для мелкого шрифта, до 2 пт, потребуется разрешение от 600 dpi и выше.

Скорость печати. Скорость печати измеряется в миллиметрах в секунду, но для магазина важнее, сколько принтер может напечатать за смену в 8 часов. По скорости печати принтеры различаются по типам:

Большинству магазинов подходят настольные принтеры этикеток.

Термотрансферный принтер или термопринтер. Разделяют две технологии печати — прямую термопечать и термотрансферную.

Термопечать этикеток работает так же, как печать чеков. На бумаге есть термоэффективный слой, который темнеет от нагретой термоголовки. Такое изображение легко стирается под воздействием температуры и выцвет от света и солнечных лучей. На витрине с подсветкой и на улице термопечать не подойдет: штрихкод быстро побледнеет, и сканер не его не считает.

Термотрансферная печать использует этикетку и красящую ленту — риббон. Под воздействием тепла красящий слой плавится, краситель прилипает к бумаге. Эта технология более устойчива к истиранию, такие этикетки не выцветают. Штрихкоды остаются читаемыми до двух лет.

Термотрансферный принтер наносит краску с ленты на этикетки. Этим он отличается от термопринтера, который выжигает изображение на специальной бумаге, как на чеках

Для розничного магазина и небольшого склада

В магазине и на складе подойдет недорогая стационарная модель с термопечатью. На ней можно печатать этикетки, ценники, рекламную информацию.

Полноразмерный принтер этикеток GS-2408D

Термопринтер для печати этикеток. Подойдет для обслуживания розничного магазина и небольшого склада. Может печатать расширенные ценники или транспортные этикетки для курьеров интернет-магазина.

Для прилавка

Если этикетки используются на освещенном прилавке или на солнечном свете, лучше выбрать более дорогой термотрансферный принтер.

Термотрансферный принтер этикеток GS-2406T

Габариты принтера позволяют использовать его прямо на прилавке. Отлично печатает коды Data Matrix для маркированных товаров. Благодаря термотрансферной технологии печати этикетки не выцветают и не стираются долгое время. Печатает на ленте шириной до 100 мм.

Для магазина с широким ассортиментом

Если товаров много и в магазине регулярно проходят акции, подойдет термопринтер с узкой этикеткой.

Термопринтер этикеток Gainscha GS-2208D

Компактный и производительный принтер этикетки. Позволяет быстро напечатать коды маркировки или ценники для большого количества товаров. Подходит для магазинов с широким ассортиментом, идеален при большом количестве акций.

Для продавцов маркированных товаров

Принтер пригодится, когда магазин продает одежду, обувь, белье, шины и фотоаппараты. Дальше под обязательную маркировку попадут кресла-коляски, велосипеды, бутилированная вода и другие виды товаров. С его помощью можно промаркировать остатки товара и обновлять ценники. Чтобы этикетки не стирались, лучше выбрать термотрансферный принтер.

Термотрансферный принтер этикеток GA-2408T

Компактный принтер для небольших объемов печати. Идеально подходит для работы с маркированными товарами. Принтер умеет печатать на этикетке без подложки. Это позволяет печатать этикетку любой длины. Модель может содержать автоматический отрезчик.

Дополнительное оборудование к принтеру

Компьютер и программа. Чтобы печатать этикетки на настольном принтере, его подключают к компьютеру. Для печати ценников мы предлагаем Дримкас Учет.

Кроме того, вместе с принтером поставляем BarTender — одну из самых популярных программ для оформления этикеток.

Смотчик. Это устройство, которое наматывает этикетку из принтера на втулку. Тогда при массовой маркировке не нужно отклеивать каждую этикетку и переносить на упаковку. Достаточно зарядить ролик в этикет-пистолет и клеить этикетки, нажимая на кнопку.

Этикет-пистолет. Механическое приспособление, которое помогает быстро расклеить этикетки после печати.

Выносной держатель. Позволяет использовать с принтером большие бобины с этикетками, которые не помещаются внутри устройства. Они крепятся на держатель, и этикетки уходят с держателя в принтер через специальное отверстие под крышкой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *