Коэффициент пульсации светодиодных ламп: нормы, измерение, способы устранить

Если световой поток исходит от источника, подключенного к импульсному или переменному напряжению, возникает мерцание. Зрительно глаза человек различают пульсации в пределах 35-60 Гц. Источники на основе диодов приобретают все большую популярность, потенциальных покупателей интересуют величина коэффициента пульсации светодиодных ламп. Продавцы в большинстве случаев знают только показатели, которые указываются производителем на упаковке. Чаще всего это маркетинговые характеристики, выгодные изготовителю. Многие поставщики из Китая этому параметру не придают значения и не нормируют его. В России коэффициент пульсации нормирован, нормы закреплены законодательством.

Определение и единица измерения

Коэффициентом пульсации (Кп) называется показатель для определения качества потока света осветительных приборов для помещений. Это частота мерцания света при питании источника переменным током.

Внимание! Пульсация приборов, запитанных от сети 50 Гц, составляет 100 Гц.

Коэффициент выше 30% в приборах с газоразрядными источниками, подключенных к однофазному току через электромагнитную пускорегулирующую аппаратуру.

У лампы накаливания, подключенной к одной фазе, Кп может достигать 15%.

В светодиодных лампах этот показатель полностью зависит от схемы драйвера. Если на его выходе прямой ток с промышленной частотой, коэффициент пульсации достигает 30%. Значение возрастает, если к осветительному прибору подключается диммер ШИМ с частотой ниже 300 Гц.

Расчеты коэффициента пульсации проводятся на основе измерений прибором, который называется пульсометром. Фиксируются максимальные, средние и минимальные показатели и вставляются в формулу:

Получается величина коэффициента пульсации на одну единицу освещаемой поверхности.

Если прибор питается от переменного тока (пульсация синусоидальная), допускается использование формулы:

Важно! При таком расчета максимальная величина коэффициента пульсаций 100% (если используется первая формула, значение может быть больше 100%).

ГОСТ Р 54945-2012 рекомендует другую формулу:

Это значит, что использование формулы (2) допускается только в том случае, если колебания гармонические (источник подлючен прямо к сети или через ЭМПРА). Если световой поток импульсивный, обязательно применение формулы (3). При наличии в схеме драйвера, диммера или ЭПРА, пульсация рассчитывает по формуле (3).

Внимание! Коэффициент пульсации является безмерной величиной, для удобства отображается в процентах. Для проведения расчетов требуются точные измерения.

Допустимые нормы пульсации

Во второй половине 20-го века были определены нормы коэффициента пульсации в 10,15 и 20% в зависимости от того, какая работа выполняется в помещении. Значение 10% выбиралось, базируясь на возможности обеспечить этот уровень. 20% выбиралось с учетом стробоскопического эффекта при превышении этого значения. Для помещений с дисплеями показатель снижается до 5%. Ограничений не существует, если люди в каком-то помещении пребывают периодически.

Нормы коэффициента пульсации в России определены законодательно:

Внимание! В ГОСТ Р 54945-2012 определено, что учитываются показатели пульсации ниже 300 Гц (более высокие значения не влияют на глаза и мозг).

Для измерения пульсации этот ГОСТ рекомендует использовать только отдельные модели люксметров-пульсметров. Указанные приборы должны быть оснащены хорошо сформированной частотной характеристикой и измерять значения пульсирующего света с частотой до 300 Гц. Обязательно наличие цифровой обработки показателей света.

Как проверить пульсацию

«На глаз» уровень мерцания определить невозможно. Необходимо знать, что эта проблема актуальна для осветительных приборов, питающихся от источника переменного тока. Если светодиодная лампочка подключена к батарейке или аккумулятору, Кп=0%. Фото- и видеокамеры позволяют определить только наличие пульсации, точные параметры определить невозможно.

Для точной проверки требуется многоканальный пульсметр-люксметр. Внешне он напоминает пульт дистанционного управления, оснащен кнопками для управления, фотодатчиком и дисплеем. Очень высокий уровень мерцаний определяется боковым зрением – если быстро перевести взгляд, возникает стробоскопический эффект (предметы «распадаются).

Дома наличие мерцания можно проверить мобильным телефоном или карандашом. Телефон держится на расстоянии метра от лампочки, появление темных полос говорит о том, что поток света пульсирует. Если быстро махать перед светильником карандашом, о пульсации свидетельствует «распадание» следа.

Отрицательное воздействие

Мозг человека не может полноценно обработать информацию, которая поступает на глаза с частотой, превышающей несколько десятком герц. По этой причине кадры в кино и по телевизору меняются с частотой 25-50 Гц. Если пульсации потока света ниже, она оказывает воздействие на глаза и анализируется мозгом. Человек может определить яркость потока, цвета, оттенки, контрасты. Если информация подается с другой частотой, люди подсознательно стараются избегать ее.

Исследования медиков показали, что на самом деле глаза и мозг воспринимают данные с частотой до 300 Гц, но не визуально. Человек воздействия не чувствует, поэтому не принимает никаких мер. Ощущения дискомфорта и усталости он связывает с другими причинами. Хотя невизуальное воздействие изучено недостаточно, все же ясно, что оно достаточно глубокое.

Внимание! Частоту пульсации выше 300 Гц глаза не воспринимают, поэтому отрицательного воздействия нет.

При кратковременном воздействии мерцания:

При продолжительном воздействии пульсации:

Самое опасное явление на рабочем месте – развитие стробоскопического эффекта при частоте мерцания до 80 Гц. У человека возникает иллюзия замедления движения и неподвижности окружающих предметов. Это повышает вероятность травматизма. При повышении частоты быстро развиваются болезни нервной системы.

Как убрать пульсацию в светодиодной лампе

Светодиодные светильники могут мерцать как в выключенном, так и во включенном состоянии.

Причин всего три:

На диоды отрицательно влияет старая проводка из алюминия, если провода подключены неверно или состарился материал изоляции. При вкручивании лампочки накаливания светодиодной с цоколем на блоке питания постоянно присутствует фаза. Из-за высокой чувствительности драйвера на него поступает ток, который через старую изоляцию утекает на землю. Поэтому на светодиодную лампу поступает небольшой ток, которого достаточно для зарядки конденсатора. Накопленный потенциал периодически подается на лампу.

Если после прозвона цепи оказывается, что провода и выключатель подключены правильно, единственное верное решение – замена алюминиевой проводки на медную.

Внимание! Если в доме или квартире к электросети подключены мощные электроприборы (теплые полы, электроплита, бойлер, отопительный котел), в проводке создается магнитное поле. При расположении проводов для освещения поблизости появляется наведенное напряжение, вызывающее мерцание.

Если после замены лампы не меняется выключатель с подсветкой, проходящие через нее токи накапливаются в драйвере, заряжая конденсатор. При разрядке ток из него поступает на светодиодную лампу. Чтобы устранить неполадку, следует убрать или усовершенствовать подсветку. При выборе второго варианта необходимо между нулевым и фазным проводом установить конденсатор или резистор.

Важно! Если в светильнике несколько светодиодных лампочек, в один патрон нужно вкрутить лампу накаливания, которая будет выполнять роль шунта.

Если у светодиодной лампы некачественный драйвер, он не может обеспечить стабильный ток на p-n переходе. Дешевые блоки делят напряжение по синусоиде и сглаживает пульсации. Они состоят из пленочного и электролитического конденсатора, резисторов, включенных в схему параллельно, и диодного моста. В результате выдается нестабильный ток, мерцание светодиода вызывают его колебания.

Единственное решение – поменять электролитический конденсатор на элемент с более высоким сопротивлением. Но чаще всего он не подходит по размерам. Кроме того, необходимо вынуть из светодиодной лампы плату, найти конденсатор, уметь выпаять его и припаять другой.

Внимание! Единственное правильное решение – заменить драйвер или купить более качественную лампочку.

В местностях, где для подачи электроэнергии поставщик используется устаревшее трансформаторное оборудование, напряжение на линии снижается. Это отрицательно влияет на работу светодиодных ламп. Проблему решает стабилизатор тока.

Основные выводы

Чтобы не портить здоровье миганием светодиодных светильников, нужно покупать сертифицированные лампы производителей, соблюдающих все стандарты и нормы. На рынке много некачественных контрафактных диодов и светильников с коэффициентом пульсации выше нормативного, поэтому при покупке нужно требовать техническую документацию и сертификат качества для каждой лампочки.

Следует учесть так же такой фактор, как диммирование. С этим оборудованием способны работать не все светодиодные лампы, поэтому при выборе необходимо тщательно изучить определенные производителем характеристики.

Если мерцающую светодиодную лампу не хочется выбрасывать, ее можно использовать в помещениях, в которых светом пользуются редко (подвалах, кладовках).

С каждым годов объем несертифицированных светодиодных лампочек уменьшается. Почти все изделия с цоколями E27 не мерцают. Пульсация источников с цоколями E14 встречается чаще (в основном «шарики и филаменты). 50% изделий с цоколем G9 мерцают, коэффициент может достигать 100%. Причина – почти невозможно в столь маленьком цоколе поместить качественный драйвер.

Мерцание светодиодных ламп

Многие лампы создают эффект мерцания, который отрицательно влияет на зрение и самочувствие человека. Для того, чтобы снизить влияние этого явления на организм, необходимо разобраться в причинах его возникновения. При покупке ламп следует обращать внимание на коэффициент пульсации, чем он ниже – тем лучше.

Мерцание и пульсация: что это

Мерцание (пульсация) – это мигания высокой частоты, создаваемые осветительным прибором. Человеческий глаз практически не воспринимает эти колебания, но мозг реагирует на мерцание лампы при частоте до 300 Гц.

Коэффициент пульсации светодиодных ламп – это показатель, выражаемый в процентах и отображающий степень колебаний при изменении светового потока. Конструктивные особенности источника света является главной причиной появления мерцаний. Нормирование коэффициента пульсации произошло не так давно, и сегодня его значение контролируется санитарными нормами. Периодически осуществляются проверки освещения специальными госорганами.

Существует несколько способов, которые позволяют измерить коэффициент пульсации источников света в домашних условиях. Но для получения максимально точных результатов используются специальные приборы – люксметры. Результаты выводятся на дисплей люксметра сразу после нажатия кнопки, после чего можно оценить их соответствие допустимым показателям.

Краткое объяснение физических процессов

Причиной мерцания является природа переменного тока (АС). Возникают непрерывные колебания тока и напряжения, избежать которых можно путем использования постоянного тока (DC) в качестве питающего.

Переменный ток электросетей имеет номинальную частоту 50–60 Гц, частота мигания осветительных приборов выше в два раза. Результаты исследований говорят о том, что при мерцании 3–70 Гц у людей, находящихся под таким источником света, могут наблюдаться неприятные ощущения. Более высокие показатели (100–500 Гц) практически не заметны человеку и могут выявляться только путем наблюдения специального эффекта, называемого стробоскопическим.

Причины мерцания (мигания) светодиодных ламп

Мерцание светодиодных ламп связано с особенностями их конструкции. Лампа представляет собой прямой преобразователь электрического тока в световой луч, который мгновенно реагирует на импульсы питающего тока. При использовании простейшего варианта подключения LED-светильника мерцания прямо пропорциональны частоте протекающего тока.

Есть еще несколько причин мерцания светодиодных ламп:

Важно знать. Самые сильные и частые пульсации светового потока создают устаревшие лампочки накаливания.

Как бороться с пульсацией и мерцанием

Самостоятельно убрать мерцание можно такими способами:

Важно знать. В светодиодных лампах используется драйвер, который контролирует подачу тока по цепи светодиодов. Но не все производители светодиодных источников света используют надежные драйверы, способные сократить пульсации до приемлемых показателей.

Лампы с маркировкой «без пульсации»

Производители не указывают коэффициент пульсации на коробке. Но если лампа качественная – на ее упаковке обязательно будет стоять значок «без пульсации». Проверить, соответствует ли эта информация действительности, можно на специализированных веб-ресурсах. Также можно самостоятельно определить наличие пульсации разными методами.

Приобрести качественные осветительные приборы можно в интернет-магазине «Свет Депо». Здесь в широком ассортименте представлены люстры, светильники, настольные лампы и другие осветительные приборы.

Проверка лампы в домашних условиях: какие есть способы тестирования

Какой коэффициент пульсации считается нормой

Для разных видов ламп утверждены разные коэффициенты пульсации:

Нормативный коэффициент пульсации светодиодных ламп и других источников света для разных помещений отличается:

Важно знать. Мозг реагирует даже на те мерцания ламп, которые зрительно не фиксируются.

Как влияет мерцание и пульсация лампы на человека

Читайте также:  Преобразователь ржавчины цинкарь – применение, особенности

Как влияет напряжение сети на мерцание светодиодов

Заниженное напряжение в электросети – одна из распространенных причин мерцания светодиодной лампы во включенном состоянии. Это явление наблюдается в некоторых городских кварталах и сельской местности, где напряжение в розетке не превышает 200 В. В такой местности стабильно светить будет только светодиодная лампочка с качественным встроенным драйвером. Рекомендуется покупать светодиодные лампы с диапазоном рабочих напряжений от 180 до 250 В.

Нестабильное напряжение в сети плохо воздействует на всех потребителей энергии, в том числе и на светодиодные источники света. Если энергетическому предприятию не удается держать его в норме, потребителям следует установить в доме стабилизаторы мощностью в несколько кВт. Благодаря этому устройству светодиодные лапы прослужат дольше и удастся решить проблему с мерцанием.

Рекомендации специалиста

Пульсация ламп накаливания и других источников света нередко возникает из-за того, что они изначально были низкокачественными. Производители оснащают их блоком питания с гасящим конденсатором, который служит вместо электронного драйвера. Из-за него при неблагоприятном внешнем воздействии устройство стабильно не функционирует. По этой причине не стоит покупать дешевые лампочки малоизвестных производителей.

В интернет-магазине «Свет Депо» покупатели смогут заказать качественные осветительные приборы с фирменной гарантией производителя. Стоимость товаров рассчитана на широкий круг потребителей. К примеру, потолочная люстра Lussole, подвесная люстра Lussole LGO.

Выводы

Лампы с высоким коэффициентом пульсации оказывают негативное влияние на здоровье человека. Для разных типов помещений установлены разные нормы коэффициента пульсации. Определить наличие мерцания можно самостоятельно, для этого используется обычный карандаш или камера смартфона. Чтобы избежать вредного воздействия данного явления стоит покупать лампы с маркировкой «без пульсации».

Если вам понравилась статья, вы можете купить светодиодные лампочки для себя в нашем интернет магазине Свет Депо.

Как устранить помехи от светодиодных ламп? Изготовление светодиодного фильтра

Бюджетные светодиодные лампы дают помехи и ухудшают качество питающей электросети 220В. Помехи возникают и при работе «энергосберегаек» — компактных люминесцентных ламп. Причина их возникновения будет описана ниже, ну а для начала проверьте насколько качественную лампу вы приобрели и какие от неё идут помехи.

Чтобы услышать помехи от светодиодных ламп и КЛЛ, нужен обычный FM-радиоприемник. Для этого включите лампу, радиоприемник и поднесите его антенну к сетевым проводам. Вы услышите целую арию из треска, шелеста и шипения – это и есть помехи которые создают светодиодные лампы, вернее их блоки питания.

Чтобы понять, как устранить помехи от светодиодных ламп нужно узнать подробнее о помехах.

Что такое помехи?

В розетке присутствует, как известно, напряжение переменное. Напряжение это имеет синусоидальную форму, если взглянуть на него с помощью осциллографа мы увидим такую картинку.

На рисунке выше вы видите напряжения с помехами и без. В идеальном случае напряжение должно быть, таким как на правой диаграмме.

Импульсные блоки питания применяются практически во всей современно технике: LED лампы, зарядные устройства, компьютерные БП, и т.д. Именно они дают помехи в сеть и чтобы от них избавится на вход по высокому напряжению устанавливают электромагнитный фильтр помех, состоящий из:

Фильтр нужен как для защиты вашего устройства, так и для того, чтобы в процессе его работы помехи не возвращались в сеть. Помехи могут возникать не только от импульсных источников питания, но и при работе коллекторных двигателей, от искрения их щёток и процессов коммутации обмоток якоря.

Как работает фильтр?

  1. Варисторы ограничивают всплески и скачки напряжения, защищают устройства от выхода из строя. Их действие вы можете видеть на средней диаграмме. Первая диаграмма показывает насколько сильные скачки могут быть. Такие всплески вмиг убьют вашу технику.
  2. Дроссель – сглаживает ток. Это катушки индуктивности, по сути своей — медный провод, намотанный в катушку, может иметь ферритовый сердечник. Устанавливается последовательно цепи.
  3. Конденсаторы сглаживают форму напряжения, как и дроссель, но устанавливаются параллельно.

Чтобы понять почему так происходит нужно запомнить законы коммутации:

«Ток в индуктивности не может изменится моментально. Напряжение на ёмкости также не может изменятся скачком.»

С фильтрами разобрались. Логично вырисовывается вопрос: если фильтры нужно устанавливать с производственной линии, почему тогда лампы и импульсные источники питания «шумят»? Ответ очень простой, потому что недобросовестный производитель просто впаивает перемычки вместо фильтра.

Делаем фильтр своими руками

Чтобы устранить помехи от светодиодного прожектора или лампы, вы можете собрать или вытащить из вышедшей и строя техники фильтр. Тем самым вы улучшите характеристики своей лампы, избавитесь от лишних шумов радиоприёмника и телевизора. Типовая схема фильтра была показана в предыдущем разделе статьи.

Рассмотрим схему фильтра от помех светодиодных ламп самостоятельной сборки.

На картинке вы видите номиналы всех деталей и компонентов. Диаметр провода для фильтра вы должны рассчитать по формуле, в зависимости от тока потребления устройства.

Мотать в один слой, не перекрещивая провода до заполнения сердечника. Желательно между витками оставить зазор.

Чтобы не заниматься намоткой фильтра вы можете использовать готовый дроссель от блока питания. Его можно найти в компьютерном БП, зарядном для ноутбука, DVD-проигрывателе, музыкальном центре, они расположены на плате блока питания. Обратите внимание и на энергосберегающие люминесцентные лампы – это источник деталей для многих радиолюбителей.

В мощных БП он может выглядеть, как тороидальный дроссель, или катушка, намотанная на ферритовом кольце. Такие фильтры обычно выдерживают тока на 2 и более Ампера.

Выпаяв дроссель, нужно добавить к нему конденсаторы согласно схеме и фильтр будет у вас готов.

Еще более простой вариант – вы можете вырезать кусок платы от добротного блока питания. Выглядит этот участок подобным образом.

Обрезать плату ножовкой по металлу и припаять провода.

Далее нужно установить этот фильтр в корпус вашего светильника, таким образом:

2 варианта избавления от помех

Вариантов решения проблемы помех два.

Первый – это добавить фильтр к источнику помех – светодиодной лампе, блоку питания, прожектору и т.д. Тогда все устройства, подключенные к сети, не будут принимать эти помехи. Однако, такое решение возможно только при условии, что в корпусе светильника есть место для установки фильтра.

В светодиодной лампе разместить фильтр крайне сложно, как вариант поискать место в светильнике, в противном случае переходим к следующему варианту.

Второй вариант – это защитить от помех ваш приемник или усилитель. На помощь может прийти заводской сетевой фильтр – это удлинитель с тройником, кнопкой и встроенном в него сетевым фильтром. Но такое устройство стоит не дёшево и можно нарваться на некачественную продукцию в корпусе которой кроме варистора и кнопки никаких фильтров не будет.

Значит нужно использовать самодельный фильтр, для этого мы по описанным выше схемам подключим его к приёмнику. Если в его корпусе нет места, то разместите его в корпусе удлинителя, или просто повесить в разрыв на провод.

Для придания эстетического вида можно обернуть его в термоусадку большого диаметра. Или уложить в мыльницу, пластиковый футляр любое что попадётся под руку. Если корпус будет металлическим – не забудьте обклеить его несколькими слоями изоленты изнутри.

Теперь вы знаете как убрать помехи от светодиодных ламп. Сделать звук вашего усилителя или приёмника чистым совсем не сложно!

Как убрать мерцание светодиодных ламп

С Вами Виталий и канал “Мастер Бобров”.

Нестандартный способ убрать пульсации или мерцание дешёвых и не качественных светодиодных ламп.

Коротенькая предыстория. Увидел в магазине лампы мощностью по 3 Вт, по 1 доллару штука, решил сыграть в лотерею и купил парочку на подсветку для фотоаппарата. Проверить их в магазине не было возможности и придя домой, заметил неприятный, но ожидаемый сюрприз – мигание, что вредно и не комфортно. Первое желание было вернуть в магазин, но решил поковыряться и нашёл способ уменьшить пульсации.

Немного теории. Самая дешёвая и распространённая схема включения светодиодов в таких лампах -сопротивление, предохранитель, ограничивающий ток конденсатор, диодный мост. Сама схема не славится ни кпд, ни подавлением пульсаций, только дешевизна. Лучший способ устранить мерцание – заменить на дорогой импульсный драйвер для светодиодов. При данной схеме, можно сделать это, увеличив ёмкость конденсатора, начиная от 100 мкф на 400 В.

Габариты и стоимость таких конденсаторов толкают к покупке импульсного драйвера. Поэтому, решил уменьшить яркость светодиодов, добавив резистор. Экспериментальным путём для этой 3 ватной подобрано сопротивление 16,5 кОм. На лампочках меньший ток. Замеры показали – напряжение на конденсаторе выросло от 150 В до 220 В, а сама деталь на 400 В, что допустимо. Пульсация схемы заметно уменьшилась.

Итого, яркость лампы и кпд снижаются, соизмеримо с люминесцентной такой же мощности, но очень дёшево. Практически убрал пульсации и продлил срок службы. По измерениям напряжение на сопротивлении получилось 100 В и простые расчёты показывают мощность примерно 0.7 Вт и мощность сопротивления должна быть 1В т. Методом подбора, чтобы не было ощутимых пульсаций.

От теории к практике, рассмотрим, как разбирается лампа и что получилось, как удалось убрать досадный недостаток. Для начала разобрал цоколь, чтобы посмотреть на схему и на какое напряжение основной конденсатор. Оказалось на 400 В. Снимаем светорассеиватель, тут светодиоды. Она немного приклеена. Просто перерезал одну дорожку и методом подбора добавил два сопротивления по 33 ком в параллель, в итоге 16.5 ком. Но суммарная мощность сопротивлений получилась 0.5 Вт, нужно подбирать по мощности дальше, а пока надежда на советское качество с запасом. Хотя в данном случае в планах из двух лампочек сделать один нормальный светильник.

При таком подходе яркость ниже и кпд становится меньше, но дёшево убираются пульсации и увеличивается срок службы светодиодов из-за питания пониженным током.

Напоминаем. Проверяйте лампы при покупке в магазине, допустим камерой смартфона или проведя простой карандашный тест на пульсации. Если видите пульсации, то такую лучше не покупать. Если всё таки купили, и дома проверили, то лучше верните её по гарантии, сохраняя чек и упаковку. Берегите своё здоровье.

Почему светодиодная лампа мерцает при выключенном свете? Устраняем причины

Многие пользователи, установившие в своем жилище новую энергосберегающую (светодиодную) лампу, с удивлением обнаруживают, что она слегка мерцает даже в отключенном состоянии. Этот не совсем привычный и абсолютно непонятный эффект сразу же наводит на мысль о неисправности купленного изделия или проводки. Важно! Однако в большинстве случаев для беспокойства нет причин – достаточно заменить светодиодный образец обычной лампой накаливания, после чего мерцание сразу же пропадает.Из этого следует вывод, что непонятное мигание после выключения освещения характерно только для светодиодных ламп (фото ниже). Причины мерцания лампыОсновными причинами, вызывающими мерцание осветительного прибора в отключенном состоянии, являются: Наличие в выключателе, управляющем коммутацией лампы, встроенного индикатора (светодиода или неоновой лампочки). Низкое качество купленного изделия, которое согласно заявлением производителя мигать не должно. Плохое состояние электропроводки в квартире, приводящее к появлению паразитных токов утечки. Согласно схемному решению, применяемому в современных выключателях с подсветкой, используемый в них светодиод с ограничивающим резистором включаются между входной и выходной клеммой коммутирующего прибора. То есть при любом его состоянии напряжение питания 220 Вольт, ограниченное сопротивлением, будет поступать на осветительный элемент (фото ниже по тексту). В драйвере светодиодной лампы имеется конденсатор, который заряжается при протекании небольших токов в цепи подсветки, что и приводит к эффекту мерцания. В качественных (брендовых) осветительных изделиях емкость конденсатора увеличивается настолько, что частота миганий для человеческого глаза практически незаметна. Влияние состояния электропроводки на этот эффект объясняется очень просто: нарушение изоляции проводов, а также скопившиеся сырость и пыль приводят к появлению утечек на землю по цепи питания лампы. По это причине она начинает мигать с частотой зарядки размещенного в драйвере конденсатора. Устраняем причины миганияДля выхода из положения можно предпринять различные действия, выбор которых зависит от предпочтений пользователя. Самый кардинальный и простой вариант – вообще демонтировать подсвечивающий элемент из корпуса выключателя. Для этого потребуется: «Снять» электропитание с квартиры (отключить вводный автомат). Удалить посредством отвертки с тонким жалом сначала клавиши, а затем декоративную рамку выключателя. После этого можно будет ослабить контакты крепления подводящего и отходящего в сторону лампы проводов. И, наконец – полностью демонтировать светодиод с резистором с осветительного прибора. Вид выключателя с неубранным светодиодом приводится ниже. Тем, кто не желает расставаться с преимуществами ночной подсветки можно дать только один совет – покупайте качественную светодиодную лампу, доработанную с учетом исключения эффекта мигания. Естественно, что она обойдется несколько дороже, но за любые удовольствия приходится платить! Намного сложнее решается вопрос в случае, когда после принятия всех описанных выше мер, лампа все равно продолжает мигать. Единственное, что может являться причиной этому – изношенная и неухоженная электропроводка. Если последовательные попытки устранить мигание всеми способами ни к чему не привели – его причиной, скорее всего, является именно этот фактор. В отдельных случаях указанная ситуация становится толчком к полной замене старой алюминиевой электропроводки на новый кабель с медными жилами.
Источник

Сглаживание пульсации ламп подключенных через диод: способы

Если световой поток исходит от источника, подключенного к импульсному или переменному напряжению, возникает мерцание. Зрительно глаза человек различают пульсации в пределах 35-60 Гц. Источники на основе диодов приобретают все большую популярность, потенциальных покупателей интересуют величина коэффициента пульсации светодиодных ламп. Продавцы в большинстве случаев знают только показатели, которые указываются производителем на упаковке. Чаще всего это маркетинговые характеристики, выгодные изготовителю. Многие поставщики из Китая этому параметру не придают значения и не нормируют его. В России коэффициент пульсации нормирован, нормы закреплены законодательством.

Читайте также:  Проекты и дизайн однокомнатной квартиры 35 кв м — фото в современном стиле с описанием способов отделки

Подсветка выключателя

Самой главной причиной моргания выключенных светодиодных и энергосберегающих лампочек является наличие подсветки в выключателе. При выключенном выключателе маленький ток все равно продолжает течь по цепи подсветки заряжая фильтрующий конденсатор. Зарядившись, конденсатор пытается запустить схему питания лампы, однако «силы» не хватает и он тут же разряжается, а лампочка кратковременно вспыхивает. Затем все это повторяется снова и снова.

Распространены 6 основных методов избавления мигания выключенных энергосберегающих ламп:

  1. шунтирование резистором
  2. шунтирование конденсатором
  3. подключение подсветки отдельным проводом
  4. использование проходного выключателя
  5. демонтаж подсветки внутри выключателя
  6. включение параллельно светодиодной обычной лампочки

Определение и единица измерения

Коэффициентом пульсации (Кп) называется показатель для определения качества потока света осветительных приборов для помещений. Это частота мерцания света при питании источника переменным током.

Внимание! Пульсация приборов, запитанных от сети 50 Гц, составляет 100 Гц.

Коэффициент выше 30% в приборах с газоразрядными источниками, подключенных к однофазному току через электромагнитную пускорегулирующую аппаратуру.

У лампы накаливания, подключенной к одной фазе, Кп может достигать 15%.

В светодиодных лампах этот показатель полностью зависит от схемы драйвера. Если на его выходе прямой ток с промышленной частотой, коэффициент пульсации достигает 30%. Значение возрастает, если к осветительному прибору подключается диммер ШИМ с частотой ниже 300 Гц.

Расчеты коэффициента пульсации проводятся на основе измерений прибором, который называется пульсометром. Фиксируются максимальные, средние и минимальные показатели и вставляются в формулу:

Получается величина коэффициента пульсации на одну единицу освещаемой поверхности.

Шунтирование резистором

Бороться с миганием можно зашунтировав схему определенным сопротивлением. Для этого берете резистор сопротивлением 1мОм и мощностью от 0,5 до 2Вт. Для безопасности лучше заизолировать его термоусадкой.
Лучшее место подключения для резистора — это распределительная коробка. Подключаете его между нулевым и фазным проводами лампочки (параллельно энергосберегайке). Особенно удобно подключать этот резистор через зажимы Wago.

После этого ваша лампа перестанет моргать.

Если ваша распредкоробка запрятана и к ней нет доступа (хотя это уже является нарушением), или в ней нет свободного места, то резистор можно припаять прямо к фазному и нулевому проводу люстры. После чего запрятать концы в клеммник.

Метод имеет большой минус.

Сопротивление будет греться, а при неправильном подборе мощности и вовсе может привести к пожару.

Кроме того, современные электронные счетчики в квартире будут учитывать расход энергии на нагрев сопротивления, и вы в конечном итоге будет платить не только за освещение, но и за эту «модернизацию».

Если прибор питается от переменного тока (пульсация синусоидальная), допускается использование формулы:

Важно! При таком расчета максимальная величина коэффициента пульсаций 100% (если используется первая формула, значение может быть больше 100%).

ГОСТ Р 54945-2012 рекомендует другую формулу:

Это значит, что использование формулы (2) допускается только в том случае, если колебания гармонические (источник подлючен прямо к сети или через ЭМПРА). Если световой поток импульсивный, обязательно применение формулы (3). При наличии в схеме драйвера, диммера или ЭПРА, пульсация рассчитывает по формуле (3).

Внимание! Коэффициент пульсации является безмерной величиной, для удобства отображается в процентах. Для проведения расчетов требуются точные измерения.

Устраняем мигание светодиодной лампы с помощью конденсатора

Если у вас нет резистора, то вместо него можно воспользоваться конденсатором емкостью от 0,01 до 1мкФ и напряжением с двухкратным запасом от импульсных помех 2*220=440В. Но надежнее всего брать минимум 630В.

Когда нет конденсатора на 630В, а есть на 400В, то при помощи паяльника можно собрать вот такую схемку.

Здесь один резистор служит для защиты конденсатора от импульсных помех, а второй для разряда конденсатора.

В цепи переменного тока, конденсатор это по сути реактивное сопротивление, которое не учитывается эл.счетчиком и в отличии от резистора конденсатор не греется.

Поэтому установка конденсатор более предпочтительнее и безопаснее. Устанавливайте его в те же места, что и вышеописанные с использованием сопротивления (распредкоробка, клеммник люстры).

Где найти такой конденсатор? Чтобы не бегать по радиомагазинам можно просто разобрать уже сгоревшую энергосберегающую лампу и вытащить оттуда или взять из обычного стартера для люминисцентных ламп. Правда есть одно НО. Применять лучше бумажный или керамический, т.к. электролитический при скачках напряжения может не безопасно взорваться. Так что если вы взяли именно его в качестве шунта, обязательно берите с большим запасом по напряжению.

Допустимые нормы пульсации

Во второй половине 20-го века были определены нормы коэффициента пульсации в 10,15 и 20% в зависимости от того, какая работа выполняется в помещении. Значение 10% выбиралось, базируясь на возможности обеспечить этот уровень. 20% выбиралось с учетом стробоскопического эффекта при превышении этого значения. Для помещений с дисплеями показатель снижается до 5%. Ограничений не существует, если люди в каком-то помещении пребывают периодически.

Нормы коэффициента пульсации в России определены законодательно:

Внимание! В ГОСТ Р 54945-2012 определено, что учитываются показатели пульсации ниже 300 Гц (более высокие значения не влияют на глаза и мозг).

Для измерения пульсации этот ГОСТ рекомендует использовать только отдельные модели люксметров-пульсметров. Указанные приборы должны быть оснащены хорошо сформированной частотной характеристикой и измерять значения пульсирующего света с частотой до 300 Гц. Обязательно наличие цифровой обработки показателей света.

Как проверить пульсацию

«На глаз» уровень мерцания определить невозможно. Необходимо знать, что эта проблема актуальна для осветительных приборов, питающихся от источника переменного тока. Если светодиодная лампочка подключена к батарейке или аккумулятору, Кп=0%. Фото- и видеокамеры позволяют определить только наличие пульсации, точные параметры определить невозможно.

Для точной проверки требуется многоканальный пульсметр-люксметр. Внешне он напоминает пульт дистанционного управления, оснащен кнопками для управления, фотодатчиком и дисплеем. Очень высокий уровень мерцаний определяется боковым зрением – если быстро перевести взгляд, возникает стробоскопический эффект (предметы «распадаются).

Дома наличие мерцания можно проверить мобильным телефоном или карандашом. Телефон держится на расстоянии метра от лампочки, появление темных полос говорит о том, что поток света пульсирует. Если быстро махать перед светильником карандашом, о пульсации свидетельствует «распадание» следа.

Отдельный нулевой провод

Если у вас выключатель находится в одном блоке с розеткой или к выключателю подведен еще и нулевой провод, то подсветку можно жестко подключить к фазе и нулю. Она будет гореть постоянно, но лампочка моргать уже не будет. Метод связан с прокладкой дополнительных проводов и не очень удобен.

Отрицательное воздействие

Мозг человека не может полноценно обработать информацию, которая поступает на глаза с частотой, превышающей несколько десятком герц. По этой причине кадры в кино и по телевизору меняются с частотой 25-50 Гц. Если пульсации потока света ниже, она оказывает воздействие на глаза и анализируется мозгом. Человек может определить яркость потока, цвета, оттенки, контрасты. Если информация подается с другой частотой, люди подсознательно стараются избегать ее.

Исследования медиков показали, что на самом деле глаза и мозг воспринимают данные с частотой до 300 Гц, но не визуально. Человек воздействия не чувствует, поэтому не принимает никаких мер. Ощущения дискомфорта и усталости он связывает с другими причинами. Хотя невизуальное воздействие изучено недостаточно, все же ясно, что оно достаточно глубокое.

Внимание! Частоту пульсации выше 300 Гц глаза не воспринимают, поэтому отрицательного воздействия нет.

При кратковременном воздействии мерцания:

При продолжительном воздействии пульсации:

Самое опасное явление на рабочем месте – развитие стробоскопического эффекта при частоте мерцания до 80 Гц. У человека возникает иллюзия замедления движения и неподвижности окружающих предметов. Это повышает вероятность травматизма. При повышении частоты быстро развиваются болезни нервной системы.

Как убрать пульсацию в светодиодной лампе

Светодиодные светильники могут мерцать как в выключенном, так и во включенном состоянии.

Причин всего три:

На диоды отрицательно влияет старая проводка из алюминия, если провода подключены неверно или состарился материал изоляции. При вкручивании лампочки накаливания светодиодной с цоколем на блоке питания постоянно присутствует фаза. Из-за высокой чувствительности драйвера на него поступает ток, который через старую изоляцию утекает на землю. Поэтому на светодиодную лампу поступает небольшой ток, которого достаточно для зарядки конденсатора. Накопленный потенциал периодически подается на лампу.

Если после прозвона цепи оказывается, что провода и выключатель подключены правильно, единственное верное решение – замена алюминиевой проводки на медную.

Внимание! Если в доме или квартире к электросети подключены мощные электроприборы (теплые полы, электроплита, бойлер, отопительный котел), в проводке создается магнитное поле. При расположении проводов для освещения поблизости появляется наведенное напряжение, вызывающее мерцание.

Если после замены лампы не меняется выключатель с подсветкой, проходящие через нее токи накапливаются в драйвере, заряжая конденсатор. При разрядке ток из него поступает на светодиодную лампу. Чтобы устранить неполадку, следует убрать или усовершенствовать подсветку. При выборе второго варианта необходимо между нулевым и фазным проводом установить конденсатор или резистор.

Важно! Если в светильнике несколько светодиодных лампочек, в один патрон нужно вкрутить лампу накаливания, которая будет выполнять роль шунта.

Если у светодиодной лампы некачественный драйвер, он не может обеспечить стабильный ток на p-n переходе. Дешевые блоки делят напряжение по синусоиде и сглаживает пульсации. Они состоят из пленочного и электролитического конденсатора, резисторов, включенных в схему параллельно, и диодного моста. В результате выдается нестабильный ток, мерцание светодиода вызывают его колебания.

Единственное решение – поменять электролитический конденсатор на элемент с более высоким сопротивлением. Но чаще всего он не подходит по размерам. Кроме того, необходимо вынуть из светодиодной лампы плату, найти конденсатор, уметь выпаять его и припаять другой.

Внимание! Единственное правильное решение – заменить драйвер или купить более качественную лампочку.

В местностях, где для подачи электроэнергии поставщик используется устаревшее трансформаторное оборудование, напряжение на линии снижается. Это отрицательно влияет на работу светодиодных ламп. Проблему решает стабилизатор тока.

Проходной выключатель

Также можно воспользоваться проходным выключателем вместо обычного. В этом случае в одном положении будет гореть лампочка, а во втором подсветка. Лампочка также моргать не будет.

Это достигается за счет прямой подачи в отключенном положении на лампу только нулевых проводников.

И уже никакие наводки не заставят ее засветиться. Правда здесь также нужно заводить нулевой проводник на выключатель. Зато данный способ позволяет избавиться от мигания, даже когда подсветка не является этому причиной! (об этом сказано ниже).

Если вас не сильно напрягают дополнительные затраты связанные с покупкой проходного переключателя, и залезать в дебри с выбором подходящих резисторов и конденсаторов у вас нет желания, то этот метод наиболее оптимальный.

Подключение простой лампочки

А когда в люстре имеется несколько рожков, то можно вместо одной энергосберегающей лампочки параллельно поставить лампу накаливания. Мигания также должны прекратиться.
Метод работает только при наличии нескольких патронов в одной лампе и наверное самый мало затратный.

Здесь есть плюсы и минусы. Минус — вы лишаетесь преимущества экономии электроэнергии, ради которой скорее всего и переходили на энергосберегайки.
Плюс — освещение становится приятнее для глаз. В некоторых ювелирных мастерских применяют именно такой свет.

Основные выводы

Чтобы не портить здоровье миганием светодиодных светильников, нужно покупать сертифицированные лампы производителей, соблюдающих все стандарты и нормы. На рынке много некачественных контрафактных диодов и светильников с коэффициентом пульсации выше нормативного, поэтому при покупке нужно требовать техническую документацию и сертификат качества для каждой лампочки.

Следует учесть так же такой фактор, как диммирование. С этим оборудованием способны работать не все светодиодные лампы, поэтому при выборе необходимо тщательно изучить определенные производителем характеристики.

Если мерцающую светодиодную лампу не хочется выбрасывать, ее можно использовать в помещениях, в которых светом пользуются редко (подвалах, кладовках).

С каждым годов объем несертифицированных светодиодных лампочек уменьшается. Почти все изделия с цоколями E27 не мерцают. Пульсация источников с цоколями E14 встречается чаще (в основном «шарики и филаменты). 50% изделий с цоколем G9 мерцают, коэффициент может достигать 100%. Причина – почти невозможно в столь маленьком цоколе поместить качественный драйвер.

СветодиодыХарактеристика и особенности светодиодных ламп Т8

СветодиодыГарантия на светодиодные лампы: срок, закон, условия

Демонтаж подсветки

Ну а наконец самый радикальный метод, когда уже сдают нервы — просто выдерните ненавистную подсветку из выключателя. Правда возникает вопрос для чего вы тогда покупали такой выключатель?

Моргает даже без выключателя с подсветкой

А что делать если ваш выключатель без подсветки, а лампа все равно моргает? При отключенном выключателе длинный питающий провод лампы может выступать своеобразной антенной. И если рядом с ним в одной штробе проложены много параллельных проводов под напряжением, то в отключенном проводе лампочки, они начнут наводить свое электрическое поле.

В результате чего образуется потенциал, который может заряжать фильтрующий конденсатор в схеме питания люминесцентной лампы.

Что с этим делать? Все также шунтировать лампу относительно маленьким сопротивлением, конденсатором или применять методы описанные выше.

Читайте также:  О стеклянных столешницах для кухонного стола

6 способов решить проблему мигания светодиодных и энергосберегающих ламп

Чаще всего с вопросом почему мигает светодиодная лампа вы можете столкнуться после ремонта или замены обычных ламп накаливания на энергосберегающие. Решить эту проблему можно 6 разными способами. Но чтобы узнать в чем причина такого странного поведения ламп для начала покопаемся в теории.

Вот одна из типовых схем энергосберегающей лампы.

Напряжение 220В поступает на диодный мост. В итоге получается постоянное напряжение определенной пульсации. Чтобы выровнять эти пульсации используется конденсатор С4. Вот как раз этот конденсатор и является всему виновником.

Подсветка выключателя

Самой главной причиной моргания выключенных светодиодных и энергосберегающих лампочек является наличие подсветки в выключателе. При выключенном выключателе маленький ток все равно продолжает течь по цепи подсветки заряжая фильтрующий конденсатор. Зарядившись, конденсатор пытается запустить схему питания лампы, однако «силы» не хватает и он тут же разряжается, а лампочка кратковременно вспыхивает. Затем все это повторяется снова и снова.

Распространены 6 основных методов избавления мигания выключенных энергосберегающих ламп:

  1. шунтирование резистором
  2. шунтирование конденсатором
  3. подключение подсветки отдельным проводом
  4. использование проходного выключателя
  5. демонтаж подсветки внутри выключателя
  6. включение параллельно светодиодной обычной лампочки

Шунтирование резистором

Бороться с миганием можно зашунтировав схему определенным сопротивлением. Для этого берете резистор сопротивлением 1мОм и мощностью от 0,5 до 2Вт. Для безопасности лучше заизолировать его термоусадкой.
Лучшее место подключения для резистора — это распределительная коробка. Подключаете его между нулевым и фазным проводами лампочки (параллельно энергосберегайке). Особенно удобно подключать этот резистор через зажимы Wago.

После этого ваша лампа перестанет моргать.

Если ваша распредкоробка запрятана и к ней нет доступа (хотя это уже является нарушением), или в ней нет свободного места, то резистор можно припаять прямо к фазному и нулевому проводу люстры. После чего запрятать концы в клеммник.

Метод имеет большой минус.

Сопротивление будет греться, а при неправильном подборе мощности и вовсе может привести к пожару.

Кроме того, современные электронные счетчики в квартире будут учитывать расход энергии на нагрев сопротивления, и вы в конечном итоге будет платить не только за освещение, но и за эту «модернизацию».

Устраняем мигание светодиодной лампы с помощью конденсатора

Если у вас нет резистора, то вместо него можно воспользоваться конденсатором емкостью от 0,01 до 1мкФ и напряжением с двухкратным запасом от импульсных помех 2*220=440В. Но надежнее всего брать минимум 630В.

Когда нет конденсатора на 630В, а есть на 400В, то при помощи паяльника можно собрать вот такую схемку.

Здесь один резистор служит для защиты конденсатора от импульсных помех, а второй для разряда конденсатора.

В цепи переменного тока, конденсатор это по сути реактивное сопротивление, которое не учитывается эл.счетчиком и в отличии от резистора конденсатор не греется.

Поэтому установка конденсатор более предпочтительнее и безопаснее. Устанавливайте его в те же места, что и вышеописанные с использованием сопротивления (распредкоробка, клеммник люстры).

Где найти такой конденсатор? Чтобы не бегать по радиомагазинам можно просто разобрать уже сгоревшую энергосберегающую лампу и вытащить оттуда или взять из обычного стартера для люминисцентных ламп. Правда есть одно НО. Применять лучше бумажный или керамический, т.к. электролитический при скачках напряжения может не безопасно взорваться. Так что если вы взяли именно его в качестве шунта, обязательно берите с большим запасом по напряжению.

Отдельный нулевой провод

Если у вас выключатель находится в одном блоке с розеткой или к выключателю подведен еще и нулевой провод, то подсветку можно жестко подключить к фазе и нулю. Она будет гореть постоянно, но лампочка моргать уже не будет. Метод связан с прокладкой дополнительных проводов и не очень удобен.

Проходной выключатель

Также можно воспользоваться проходным выключателем вместо обычного. В этом случае в одном положении будет гореть лампочка, а во втором подсветка. Лампочка также моргать не будет.

Это достигается за счет прямой подачи в отключенном положении на лампу только нулевых проводников.

И уже никакие наводки не заставят ее засветиться. Правда здесь также нужно заводить нулевой проводник на выключатель. Зато данный способ позволяет избавиться от мигания, даже когда подсветка не является этому причиной! (об этом сказано ниже).

Если вас не сильно напрягают дополнительные затраты связанные с покупкой проходного переключателя, и залезать в дебри с выбором подходящих резисторов и конденсаторов у вас нет желания, то этот метод наиболее оптимальный.

Подключение простой лампочки

А когда в люстре имеется несколько рожков, то можно вместо одной энергосберегающей лампочки параллельно поставить лампу накаливания. Мигания также должны прекратиться.
Метод работает только при наличии нескольких патронов в одной лампе и наверное самый мало затратный.

Здесь есть плюсы и минусы. Минус — вы лишаетесь преимущества экономии электроэнергии, ради которой скорее всего и переходили на энергосберегайки.
Плюс — освещение становится приятнее для глаз. В некоторых ювелирных мастерских применяют именно такой свет.

Демонтаж подсветки

Ну а наконец самый радикальный метод, когда уже сдают нервы — просто выдерните ненавистную подсветку из выключателя. Правда возникает вопрос для чего вы тогда покупали такой выключатель?

Моргает даже без выключателя с подсветкой

А что делать если ваш выключатель без подсветки, а лампа все равно моргает? При отключенном выключателе длинный питающий провод лампы может выступать своеобразной антенной. И если рядом с ним в одной штробе проложены много параллельных проводов под напряжением, то в отключенном проводе лампочки, они начнут наводить свое электрическое поле.

В результате чего образуется потенциал, который может заряжать фильтрующий конденсатор в схеме питания люминесцентной лампы.

Что с этим делать? Все также шунтировать лампу относительно маленьким сопротивлением, конденсатором или применять методы описанные выше.

Как выбрать электрический краскопульт (2018)

О покупке краскораспылителя (краскопульта) наверняка задумывался каждый, кому приходилось заниматься малярными работами. Ручные способы окраски не обеспечивают должного качества покрытия, да еще и малопроизводительны. Но не стоит покупать первый попавшийся краскопульт и надеяться, что он навсегда заменит кисть и валик.

Разные краскопульты обладают разными возможностями, и, чтобы не разочароваться в приобретении, следует разобраться в характеристиках краскораспылителей и в том, как они влияют на их возможности.

Применение электрических краскопультов

Электрические краскопульты считаются бытовым инструментом, профессионалы обычно пользуются пневматическими. Хотя среди электрических краскораспылителей есть и такие, «всеядность» и производительность которых позволяют отнести их если и не к профессиональным, то, как минимум, полупрофессиональным. Поэтому электрические краскопульты используются не только в быту как замена кисти и валика, они также применяются при:

– отделочных работах для покраски стен и потолков;

– строительных работах для покраски стен и заборов;

– изготовлении садовой мебели и деревянных конструкций;

– опрыскивании кустарников и растений инсектицидами или удобрениями.

Виды электрических краскопультов

Электрические краскопульты бывают двух видов: воздушные и безвоздушные. Производитель довольно редко дает информацию, к какому виду относится инструмент, но это легко определяется по внешнему виду краскопульта и его параметрам.

Безвоздушные краскопульты легко отличить по низкой мощности, низкой цене, чашке рассекателя на сопле и характерному «горбу» над резервуаром для краски, в котором прячется плунжерный насос. С помощью этого насоса безвоздушный краскопульт подает краску в сопло, где она разбрызгивается мелкими каплями.

Основное преимущество безвоздушных краскопультов – приемлемая производительность при низкой мощности (и соответственно, низкой цене). Расход краски в такой конструкции легко регулируется изменением скорости вращения двигателя насоса, поэтому регуляторами расхода краски оснащаются даже самые бюджетные модели. Кроме того, даже при малой мощности безвоздушные краскопульты способны справляться с довольно вязкими красками.

Но недостатков тоже хватает:

– из-за неоднородности краски красящий факел имеет нестабильную форму, что снижает качество покраски;

– образуются капельки краски разного размера, что ведет как к риску образования потеков из-за крупных капель, так и к повышенному расходу краски из-за мелких (красочной пыли);

– и форма факела, и размер капелек определяются качеством изготовления сопла, которое на дешевых моделях может быть довольно низким. Кроме того, пластиковые сопла быстро изнашиваются;

– после окончания работы инструмент требует тщательной промывки с расходом большого количества растворителя. Если не промыть (или плохо промыть) инструмент после работы, краска засохнет внутри насоса и краскопульт можно выбрасывать.

Воздушные краскопульты забирают краску из резервуара с помощью струи воздуха. Это позволяет создать красящий факел стабильной формы и снижает требования к промывке инструмента: даже непромытый и засохший краскопульт обычно можно «привести в чувство», просто прочистив сопло (хотя лучше все-таки такого не допускать).

Следует иметь в виду, что абсолютное большинство воздушных электрических распылителей использует технологию HVLP (High Volume Low Pressure – «Большой Объем Низкое Давление») и, соответственно, обладает всеми преимуществами и недостатками этой технологии. К преимуществам относятся пониженный расход краски и высокая производительность.

Недостатки тоже есть:

– высокий расход воздуха требует наличия мощного компрессора, что заметно повышает цену инструмента;

– покраска с небольшого расстояния (15-30 см) и высокая производительность приводят к тому, что при недостаточной квалификации легко допустить образование потеков;

– из-за высокого расхода воздуха инструмент сильно пылит. Если окрашиваемая поверхность контактирует с песком или землей (например, при окраске забора), то увлекаемые воздухом частицы будут липнуть к поверхности;

– чтобы иметь возможность использования вязких красок, мощность компрессора должна быть выше среднего – недорогие воздушные электрораспылители могут работать только с жидкими красками;

– невозможно производить покраску в замкнутом объеме – воздух будет стремиться покинуть этот объем и увлекать с собой краску.

Нетрудно заметить, что оба вида электрических краскопультов плохо подходят для аккуратной покраски некрупных деталей и деталей сложной формы. Если это именно ваш случай, возможно, следует обратить внимание на пневматические краскопульты технологии LVLP.

Характеристики электрических краскораспылителей

Мощностьопределяет как производительность краскопульта, так и то, насколько вязкие жидкости он сможет распылять. Если вам нужен инструмент, способный справиться с краской или лаком любой вязкости, на мощность следует обратить самое пристальное внимание.

Только следует помнить о том, что мощность безвоздушных и воздушных электрических краскопультов отличается на порядок: безвоздушные имеют мощность в диапазоне 60-150 Вт, а воздушные – 100-1500 Вт. Если для безвоздушного краскопульта 110 Вт означают приличного «середнячка», мощности которого хватит для большинства задач, то для воздушного те же 110 Вт – самый минимум и производительность такого инструмента может оказаться удручающе низка.

Допустимая вязкость. Чем меньше диаметр сопла и чем больше вязкость, тем большая мощность требуется для поддержания расхода краски. Если вязкость будет выше допустимой, мощности насоса уже будет не хватать и производительность начнет падать.

При сильном превышении вязкости выше допустимой возможно засорение сопла и падение производительности до нуля. Определить вязкость краски можно с помощью вискозиметра, входящего в комплект большинства краскопультов.

Вискозиметр обычно представляет собой стакан или воронку с отверстием. Вязкость определяется по времени вытекания определенного объема жидкости через отверстие.

Большинство красок можно развести до необходимой вязкости с помощью растворителей, проблемы могут возникнуть разве что на маломощных краскопультах с некоторыми акриловыми красками и лаками, эмалевыми и масляными красками. Краскопульты высокой мощности способны использовать весь спектр ЛКМ за исключением разве что битумных и эпоксидных мастик.

Определившись с мощностью и допустимой вязкостью, следует обратить внимание на список поддерживаемых материалов. Некоторые краски могут быть неприменимы на конкретной модели краскопульта, даже если их вязкость ниже допустимой. Это может быть связано с составом краски или размером её частиц. Так, суспензии металлических пудр («серебрянки») могут не попасть в список поддерживаемых материалов из-за крупного размера частиц.

Чем выше производительность краскопульта, тем быстрее он справится с поставленной задачей. Производительность электрических краскораспылителей измеряется в г/мин. Чтобы примерно представить, как быстро краскопульт той или иной производительности покрасит определенную площадь, можно воспользоваться следующей таблицей:

Приведены приблизительные средние значения на покраску 1 слоя. Фактическия значения могут варьироваться в большом диапазоне для различных красок и различных поверхностей

Воздушные краскопульты могут быть со шлангом – в таких моделях компрессор расположен отдельно и воздух от него подается к краскопульту с помощью шланга. Такое решение позволяет увеличить мощность компрессора, не увеличивая вес самого краскопульта. Фактически, это единственный возможный вариант для мощных краскопультов – держать на вытянутой руке компрессор весом в несколько килограмм никому не понравится.

Но для недорогого краскопульта средней мощности такое разделение тоже может заметно облегчить работу, особенно при покраске труднодоступных мест.

Система регулировки расхода краски – весьма полезная опция, особенно для мощных высокопроизводительных краскопультов. Для жидких красок и ответственных работ можно установить пониженный расход краски – это снизит производительность, зато уменьшит вероятность появления подтеков.

Варианты выбора

Если необходимость в краскораспылителе возникает нечасто, можно приобрести [url=”http://www.dns-shop.ru/catalog/17a9c5b416404e77/kraskoraspyliteli/?p=1&mode=list&stock=2&order=1&f=35-155&f=130-300]недорогой безвоздушный краскопульт. Только не забывайте тщательно промывать его после использования.

Если краскопультом предполагается пользоваться часто, но объемы покраски предполагаются небольшие, оптимальным выбором будет [url=”http://www.dns-shop.ru/catalog/17a9c5b416404e77/kraskoraspyliteli/?p=1&mode=list&stock=2&order=1&f=155-705]воздушный краскопульт средней мощности.

Для профессионального использования и больших площадей потребуется [url=”http://www.dns-shop.ru/catalog/17a9c5b416404e77/kraskoraspyliteli/?p=1&mode=list&stock=2&order=1&f=695-1200]мощный высокопроизводительный краскораспылитель.

Чтобы снизить нагрузку на руки, выбирайте среди моделей со шлангом.

Если вы приобретаете не самую мощную модель и при работе хотите быть уверены, что вязкость используемой краски не слишком высока, обратите внимание на наличие вискозиметра в комплекте – с ним вы всегда сможете развести краску до нужной степени вязкости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *