Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом виде: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Делитель напряжения — калькулятор онлайн

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

33 комментария

Короче,делитель напряжения — это следящая ( сравнивающая ) цепочка в системах автоматического регулирования. Её можно увидеть в регуляторах напряжеия генераторов.

Отличная статья, жаль, что про рассеиваемую мощность не сказано ни слова.

спасибо,понравилось.вопрос-схема где показаны способы присоединения делителей
правый(внизу) измеряют снимаемое (Uout) c
Uout и минуса входящего?

Просто и понятно описано, чтобы понять даже ребенку.

За калькуляторы отдельное спасибо — очень удобно!

Увы. Врет калькулятор безбожно!
Пытался рассчитать делитель с 6В на 2.5В.
Жаль нельзя скриншот вставить.
Результаты:
По формуле 1: R1 = 4.8K, R2 = 22K, Vin = 6В, Vout = 4.4В. (Значения резисторов взяты из результатов формулы 3)
По формуле2: Vin = 6В, Vout = 2.5В, R1+R2 = 26,4K. Результат: R1 = 666,667, R2 = 3,333K. В сумме ну никак не 26К, которые в исходных данных забиты.
По формуле3: Vin=6B, Vout = 2,5B, R2=22K. Результат: R1 = 4,4K. (при расчете вручную 30800)
Т.е. результаты ну совсем рядом не стояли. А по идее формулы должны сходные результаты давать.
Кроме этого, в формуле 1. R1 указано 4.8К, при этом Vout = 4.4В. Если указать R1 4.84, то результат уже 1.245. Добавили 0.04К, а напряжение упало аж в 4 раза? А если добавить еще 0.004К, то на выходе уже 152 мВ. Т.е. в 10 раз меньше предыдущего.
В общем не фонтан.

Читайте примечание внизу калькулятора…

для корректной работы калькулятора, в качестве разделительного знака в водимых значениях надо ставить точку, а не запятую. пример: 1,5 — неверно; 1.5 — верно.

В первом калькуляторе значения R1 и R2 перепутаны

вполне приличный калькулятор.спасибо.

Спасибо за отличный и удобный калькулятор!

Рассчитать резистор R2 для выходного напряжения (Uout) и резистора R1-добавить для удобства расчетов

смысла формулы не пойму , почему в делителе нужно умножать именно на R2, Ток течет от плюса к минусу чисто условно, он с таким же успехом идет и наоборот, Впечатление , что формула хоть и верная но притянута за уши .

При умножении на R1 ты вычислишь разницу напряжений Uin-Uout

А как будет влиять на систему нагрузка? Она снизит сопротивление цепи.

Без учета нарузки это сферический конь в вакууме.

Сама идея создать калькуляторы хорошая.
Только вот изначально необходимо вводить условие нагрузки. Без этого такие калькуляторы совершенно бессмысленные, и годятся разве что для демонстрации закона Ома.
И хорошо бы сделать калькулятор на несколько коэффициентов деления, например 1:1 — 1:10 — 1:100 — 1:1000, и конечно же с условием входного сопротивления нагрузки.
И в этом же калькуляторе должны быть строки для отображения мощности рассеяния резисторов делителя.
И при этом необходимо ещё учитывать температуру резисторов. Собственно, все проекты начинаются с задания диапазона рабочих температур. А иначе при работе все эти резисторы перекосит по сопротивлению напрочь.
Вобщем, в таком виде это не калькуляторы, а бессмысленные игрушки.

Блин, ребята! Такие делители применяются исключительно для задания какого-нибудь опорного напряжения для компаратора или для задания точки смещения транзистора. В таких условиях просто принимается что сопротивление нагрузки (т.е. входа этого самого компаратора) на порядки больше, и, соответственно сопротивление такой нагрузки почти не влияет на конечный результат. Да и отклонение резисторов а также температурный дрейф будут вносить бОльшие искажения, нежели сопротивление входа компаратора. А если требуется более точное напряжение, то ставят точные стабилитроны или вобще специализированную микросхему — ИОН (источник опорного напряжения). Но никто через такие делители не запитывает именно полноценную нагрузку. Частный случай такого делителя, это если вместо нижнего резистора ставится стабилитрон. Тогда расчёт по мощности упирается в допустимую мощность стабилитрона, а мощность нагрузки должа быть в разы меньше, т.е. таким образом можно разве что подать питание на одну-две микросхемы маломощные.

отличная подборка, присоединюсь к уже озвученному, жаль нет расчёта по мощности )))

да кстати сколько ват рассеит резистор как посчитать?

Тупит ваш калькулятор, у меня практическая схема R1=260 Ом 10W, R2=120 Ом 5W, при входном 56В на выходе 18В. Мигалка для электропогрузчика с бортовым 56В. Ваш калькулятор перекрывает выходные значения сообщением о мощности и величине сопротивления.

Прям сразу и тупит?
То что действительно выскакивает сообщение с предупреждением и перекрывает область вывода результата вычисления я подтверждаю — косяк неотлаженный.
Да и само это предупреждение, на мой взгляд, излишнее — рассеиваемая мощность — этот вопрос решается подбором суммы сопротивлений резисторов R1 и R2 исходя из цели делителя.

Спасибо за замечание. Предупреждение отключил..

Вам спасибо за отличную статью!
Просмотрел все комментарии и больше не нашел обоснованных претензий и считаю что с ликбезом Вы отлично справились, еще раз спасибо!
Калькуляторы в данной статье я рассматриваю как бонусы от автора, самое ценное в статье — это разжеванная методика расчета делителя напряжения.

Хороший калькулятор, спасибо автору. Но для полного удобства не хватает расчёта R2 при известном R1 и напряжениях. Как раз столкнулся с такой задачей, пришлось решать методом перебора с последовательным приближением. Все равно это будет переменный резистор, главное понять какой туда повесить чтобы покрыть весь диапазон выходных напряжений, не рискуя разорвать ОС при «шуршании» бегунка резистора (регулируемый БП).

Нужно еще один калькулятор — чтобы по Uin, Uout и I выдавал нужные сопротивления (когда нужно, чтобы ток был определенной величины — не больше заданной, но и не на порядки меньше: например, ток 10мА при 10В->3В, если брать килоомные сопротивления, меня не устраивает)

Найдем сумму сопротивлений:
10В / 10ма = 1000 Ом.
Подставляем известные и найденное значения во второй калькулятор и в-у-аля!
Нет предела совершенства любой программы — это известный факт.
И самому иногда мозгом пошевелить полезно!

Согласен с IBM5170. Не хватает расчёта R2 при известном R1 и напряжениях. Но, если вместо Vout вставить Vin-Vout, а вместо R2 известное R1, то получаем значение R2.

благодарю — то что надо

посчитать рассеиваемую мощность резисторов делителя можно, зная ток через делитель, падение напряжения на каждом резисторе. умножаете ток на напряжение получаете мощность на каждом резисторе. Только соблюдайте одну размерность. Второй закон Кирхгофа

Столько грамотеев собралось посмеяться над своей бестолковостью. Зачем вам формулы, вы же далеки от электротехники и вообще от техники. А все туда же — поиск соринки в чужом глазу. Свои глаза сначала просуши от безграмотности

Отличный калькулятор, огромное спасибо автору, не надо париться и рассчитывать по формулам

Делитель напряжения

Делитель напряжения – это это цепь, состоящая из двух и более пассивных радиоэлементов, которые соединены последовательно.

Делитель напряжения на резисторах

Давайте разберем самый простой делитель напряжения, состоящий из двух резисторов. Эти два резистора соединим последовательно и подадим на них напряжение. Напряжение может быть как постоянное, так и переменное.

Подавая напряжение на эту цепь, состоящую из двух резисторов, у нас получается, что цепь становится замкнутой, и в цепи начинает течь электрический ток с какой-то определенной силой тока, которая зависит от номиналов резисторов.

Итак, мы знаем, что при последовательном соединении сила тока в цепи одинакова. То есть какая сила тока протекает через резистор R1, такая же сила тока течет и через резистор R2. Как же вычислить эту силу тока? Оказывается, достаточно просто, используя закон Ома: I=U/R.

Так как наши резисторы соединены последовательно, то и их общее сопротивление будет выражаться формулой

То есть в нашем случае мы можем записать, что

Как найти напряжение, которое падает на резисторе R2?

Так как ток для обоих резисторов общий, то согласно закону Ома

Подставляем вместо I формулу

и получаем в итоге

Для другого резистора ситуация аналогичная. На нем падает напряжение

Для него формула запишется

Давайте докажем, что сумма падений напряжений на резисторах равняется напряжению питания, то есть нам надо доказать, что U=UR1 +UR2 . Подставляем значения и смотрим.

что и требовалось доказать.

Эта формула также работает и для большого количества резисторов.

На схеме выше мы видим резисторы, которые соединены последовательно. Чему будет равняться Uобщ ? Так как резисторы соединены последовательно, следовательно, на каждом резисторе падает какое-то напряжение. Сумма падений напряжения на всех резисторах будет равняться Uобщ . В нашем случае формула запишется как

Как работает делитель напряжения на практике

Итак у нас имеются вот такие два резистора и наш любимый мультиметр:

Замеряем сопротивление маленького резистора, R1=109,7 Ом.

Замеряем сопротивление большого резистора R2=52,8 Ом.

Выставляем на блоке питания ровно 10 Вольт. Замер напряжения производим с помощью мультиметра.

Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять в дальнейшем также с помощью мультиметра.

Замеряем падение напряжения на большом резисторе, который обладает номиналом в 52,8 Ом. Мультиметр намерял 3,21 Вольта.

Замеряем напряжение на маленьком резисторе номиналом в 109,7 Ом. На нем падает напряжение 6,77 Вольт.

Ну что, с математикой, думаю, у всех в порядке. Складываем эти два значения напряжения. 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения. Мы еще раз убедились, что сумма падений напряжений на каждом резистора равняется напряжению питания, которое подается на эту цепь.

Читайте также:  Необычный дизайн гостиной: сложность трактовки понятия

Сила тока в цепи при последовательном соединении резисторов

Давайте убедимся, что сила тока при последовательном соединении резисторов везде одинакова. Как измерить силу тока постоянного напряжения, я писал здесь. Как видим, мультиметр показал значение 0,04 А или 40 мА в начале цепи, в середине цепи и даже в конце цепи. Где бы мы не обрывали нашу цепь, везде одно и то же значение силы тока.

Переменный резистор в роли делителя напряжения

Для того, чтобы плавно регулировать выходное напряжение, у нас есть переменный резистор в роли делителя напряжения. Его еще также называют потенциометром.

Его обозначение на схеме выглядит вот так:

Принцип работы такой: между двумя крайними контактами постоянное сопротивление. Сопротивление относительно среднего контакта по отношению к крайним может меняться в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и имеет полное сопротивление 330 Ом. Давайте посмотрим, как он будет делить напряжение.

Так как мощность небольшая, всего 1 Вт, то мы не будем нагружать его большим напряжением. Мощность, выделяемая на каком-либо резисторе рассчитывается по формуле P=I 2 R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.

Для этого выставляем на блоке напряжение в 1 Вольт и цепляемся к нашему резистору по двум крайним контактам.

Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напряжение между левым и средним контактом и получаем 0,34 Вольта.

Замеряем напряжение между средним и правым контактом и получаем 0,64 Вольта

Суммируем напряжение и получаем 0,34+0,64=0,98 Вольт. 0,02 Вольта опять где-то затерялись. Скорее всего на щупах, так как они тоже обладают сопротивлением. Как вы видите, простой переменный резистор мы можем использовать в роли простейшего делителя напряжения.

Похожие статьи по теме “делитель напряжения”

Делитель напряжения. Расчет делителя напряжения.

Делитель напряжения, одна из широко используемых схем соединения резисторов. Делитель напряжения позволяет уменьшить выходное напряжение. Например, на вход делителя подается 12 Вольт, а на выходе 3 Вольта, или сколько нужно, но не больше входного напряжения делителя. Схема соединения резисторов, о которой мы говорим, может использоваться только для слаботочной нагрузки, чуть позже я объясню почему. Вот собственно и сама схема делителя:

Делитель напряжения вы все ни один раз видели, например, регулятор громкости. Регулятором громкости является переменный резистор, соединенный по схеме потенциометра.

Потенциометр, можно представить как два резистора, соединённых последовательно, при вращении рукоятки один резистор уменьшает свое сопротивление, другой увеличивает.

В делителе напряжения, входное напряжение полностью падает на двух резисторах. Например, входное напряжение 40 Вольт и если на одном резисторе падает 3 Вольта, то на другом 37 Вольт.

Расчет делителя напряжения.

Сразу скажу одно правило, ток, протекающий через резистор R1 и R2 должен быть как минимум в 10 раз больше, чем ток нагрузки (иначе будет просадка напряжения на выходе). Например, если к нашему девайсу будет подсоединена лампа, потребляющая ток 40 мА, то делитель нужно рассчитывать так, чтобы ток, текущий через резисторы R1 и R2 был минимум 400 мА (в 10 и более раз больше).

И еще один нюанс. Ток делителя не только должен быть больше тока нагрузки в 10 раз, но и должен быть меньше тока, выдаваемого источником тока. Вот пример, мы посадили на выход делителя напряжения лампу, потребляющую 200 мА, соответственно ток через делитель потечет как минимум в 10 раз больше (2 Ампер), но если источник тока у нас рассчитан выдавать 1 Ампер, то он просто напросто не вытянет и сгорит, либо сработает защита.

Поэтому есть правило. При расчете делитель напряжения нужно рассчитывать так, чтобы ток через него был как минимум в 10 раз больше тока нагрузки и меньше максимального тока источника. Отсюда делитель напряжения используют для слаботочных нагрузок.

Входной ток (ток делителя) ищется по такой формуле:

Например, у меня входное напряжение 12 Вольт (10 Ампер), мне нужен делитель напряжения, у которого на выходе нагрузка напряжением 3 Вольта и током потребления 20 мА (зацеплю светодиод).

Ток делителя Iвх должен быть минимум в 10 раз больше тока нагрузки, возьму в 20 раз. Получается Iвх = 20 мА*20=400мА.

Найдем теперь сумму резисторов R1 и R2 (Rобщ) зная ток, текущий через них 0,4 Ампер и напряжение на них 12 Вольт. Rобщ=12 Вольт/0,4 Ампер = 30 Ом.

Далее нахожу номинал резистора R2 по следующей формуле:

R2 = (3 Вольта*30 Ом)/12 Вольт = 7,5 Ом.

Теперь нахожуу R1, R1 = Rобщ – R2 = 30 – 7,5 = 22,5 Ом.

Давайте проверим по этой формуле:

Iвх = 3 Вольт / 7,5 Ом = 0,4 Ампер.

Iвх = 12 Вольт / 30 Ом = 0,4 Ампер.

Рассчитаем мощность резисторов. Напряжение на R2 = 3 Вольт, значит напряжение на R1 = Uвх-Uвых = 9 Вольт (я уже говорил, если на одном падает 3 Вольта, то на втором резисторе делителя падает остальное напряжение).

Мощность ищется по следующей формуле:

P1 = 9 Вольт* 0,4 Ампер = 3,6 Вт (из стандартного ряда 5 Вт);

P2 = 3 Вольт* 0,4 Ампер = 1,2 Вт (из стандартного ряда 2 Вт);

Вот еще несколько формул, вы их можете использовать для расчета делителя напряжение в зависимости от того, какими известными значениями вы владеете.

При расчете мы получили следующие номиналы резисторов, R1 = 22,5 Ом (из стандартного рядя 22 Ом), R2 = 7,5 Ом.

По мощности у меня оба резистора 2 Вт, поэтому R1 у меня сильно греется.

Входное напряжение делителя 12 Вольт.

Напряжение, которое падает на R1 = 22 Ом почти 9 Вольт.

Напряжение, которое падает на R2 = 7,5 Ом (наше выходное напряжение делителя) = 3 Вольта.

Ток, текущий через R1 и R2 (входной ток делителя) = 430 мА.

Светодиод загорается и горит в нормальном режиме, не перегорая.

Если пренебрегать погрешностями резисторов и прибора, то расчет верен.

Что такое делитель напряжения и для чего он используется

Определение

Делителем напряжения называется прибор или устройство, которое понижает уровень выходного напряжения относительно входного, пропорционально коэффициенту передачи (он будет всегда ниже нуля). Такое название он получил, потому что представляет собой два и более последовательно соединенных участка цепи.

Они бывают линейными и нелинейными. При этом первые представляют собой активное или реактивное сопротивление, в которых коэффициент передачи определяется соотношением из закона Ома. К ярко выраженным нелинейным делителям относят параметрические стабилизаторы напряжения. Давайте разберемся как устроен это прибор и зачем он нужен.

Виды и принцип действия

Сразу стоит отметить, что принцип работы делителя напряжения в общем одинаков, но зависит от элементов, из которых он состоит. Различают три основных вида линейных схем:

Наиболее распространен делитель на резисторах, из-за своей простоты и легкости расчетов. На его примере и рассмотрим основные сведения об этом устройстве.

У любого делителя напряжения есть Uвходное и Uвыходное, если он состоит из двух резисторов, если резисторов три, то выходных напряжений будет два, и так далее. Можно сделать любое количество ступеней деления.

Uвходное равно напряжению питания, Uвыходное зависит от соотношения резисторов в плечах делителя. Если рассматривать схему на двух резисторах, то верхним, или как его еще называют, гасящим плечом будет R1. Нижним или выходным плечом будет R2.

Допустим у нас Uпитания 10В, сопротивление R1 — 85 Ом, а сопротивление R2 — 15 Ом. Нужно рассчитать Uвыходное.

U=I*R

Так как они соединены последовательно, то:

U1=I*R1

U2=I*R2

Тогда если сложить выражения:

U1+U2=I(R1+R2)

Если выразить отсюда ток, получится:

Подставив предыдущее выражение, имеем следующую формулу:

Посчитаем для нашего примера:

Делитель напряжения может быть выполнен и на реактивных сопротивлениях:

Тогда расчеты будут аналогичны, но сопротивления рассчитывают по нижеприведенным формулам.

Особенностью и различием этих видов делителей является то, что резистивный делитель может использоваться в цепях переменного и в цепях постоянного тока, а емкостной и индуктивный только в цепях переменного тока, потому что только тогда будет работать их реактивное сопротивление.

Интересно! В некоторых случаях емкостной делитель будет работать в цепях постоянного тока, хорошим примером является использование такого решения во входной цепи компьютерных блоков питания.

Использование реактивного сопротивления обусловлено тем, что при их работе не выделяется такого количества тепла, как при использовании в конструкциях активных сопротивлений (резисторов)

Примеры использования в схеме

Есть масса схем, где используются делители напряжения. Поэтому мы приведем сразу несколько примеров.

Допустим мы проектируем усилительный каскад, на транзисторе, который работает в классе А. Исходя из его принципа действия, нам нужно задать на базе транзистора такое напряжение смещения (U1), чтобы его рабочая точка была на линейном отрезке ВАХ, при этом чтобы ток через транзистор не был чрезмерным. Допустим нам нужно обеспечить ток базы в 0,1 мА при U1 в 0,6 Вольта.

Тогда нам нужно рассчитать сопротивления в плечах делителя, а это обратный расчет относительно того, что мы привели выше. В первую очередь находят ток через делитель. Чтобы ток нагрузки не сильно влиял на напряжения на его плечах, зададим ток через делитель на порядок выше тока нагрузки в нашем случае 1 мА. Uпитания пусть будет 12 Вольт.

Тогда общее сопротивление делителя равняется:

Соответственное верхнее плече погасит

Но это еще не весь расчет. Для полного расчета делителя нужно определить и мощность резисторов, чтобы они не сгорели. При токе 1 мА на R1 выделится мощность:

Здесь она ничтожно мала, но представьте какой мощности нужны были бы резисторы, если бы ток делителя составлял 100 мА или 1 А?

Для первого случая:

Для второго случая:

Что уже немалые для электроники цифры, в том числе и для использования в усилителях. Это не эффективно, поэтому в настоящее время используют импульсные схемы, хотя и линейные продолжают использоваться либо в любительских конструкциях, либо в специфичном оборудовании с особыми требованиями.

Второй пример – это делитель для формирования Uопорного для регулируемого стабилитрона TL431. Они применяются в большинстве недорогих блоков питания и зарядных устройств для мобильных телефонов. Схема подключения и расчетные формулы вы видите ниже. С помощью двух резисторов здесь создается точка с Uопорным в 2.5 вольта.

Еще один пример — это подключение всевозможных датчиков к микроконтроллерам. Рассмотрим несколько схем подключения датчиков к аналоговому входу популярного микроконтроллера AVR, на примере семейства плат Arduino.

В измерительных приборах есть разные пределы измерения. Такая функция реализуется также с помощью группы резисторов.

Но на этом область применения делителей напряжения не заканчивается. Именно таким образом гасятся лишние вольты при ограничении тока через светодиод, также распределяется напряжение на лампочках в гирлянде, и также вы можете запитать маломощную нагрузку.

Нелинейные делители

Мы упомянули, что к нелинейным делителям относится параметрический стабилизатор. В простейшем виде он состоит из резистора и стабилитрона. У стабилитрона условное обозначение на схеме похоже на обычный полупроводниковый диод. Разница лишь в наличии дополнительной черты на катоде.

Расчет происходит, отталкиваясь от Uстабилизации стабилитрона. Тогда если у нас есть стабилитрон на 3.3 вольта, а Uпитания равно 10 вольт, то ток стабилизации берут из даташита на стабилитрон. Например, пусть он будет равен 20 мА (0.02 А), а ток нагрузки 10 мА (0.01 А).

Разберемся как работает такой стабилизатор. Стабилитрон включается в цепь в обратном включении, то есть если Uвыходное ниже Uстабилизации – ток через него не протекает. Когда Uпитания повышается до Uстабилизации, происходит лавинный или туннельный пробой PN-перехода и через него начинает протекать ток, который называется током стабилизации. Он ограничен резистором R1, на котором гасится разница между Uвходным и Uстабилизации. При превышении максимального тока стабилизации происходит тепловой пробой и стабилитрон сгорает.

Кстати иногда можно реализовать стабилизатор на диодах. Напряжение стабилизации тогда будет равно прямому падению диодов или сумме падений цепи диодов. Ток задаете подходящий под номинал диодов и под нужды вашей схемы. Тем не менее такое решение используется крайне редко. Но такое устройство на диодах лучше назвать ограничителем, а не стабилизатором. И вариант такой же схемы для цепей переменного тока. Так вы ограничите амплитуду переменного сигнала на уровне прямого падения — 0,7В.

Вот мы и разобрались что это такое делитель напряжения и для чего он нужен. Примеров, где применяется любой из вариантов рассмотренных схем можно привести еще больше, даже потенциометр в сущности является делителем с плавной регулировкой коэффициента передачи, и часто используется в паре с постоянным резистором. В любом случае принцип действия, подбора и расчетов элементов остается неизменным.

Напоследок рекомендуем посмотреть видео, на котором более подробно рассматривается, как работает данный элемент и из чего состоит:

Что такое делитель напряжения и как его рассчитать?

Бюджетным вариантом преобразования основных параметров электрического тока являются делители напряжения. Такое устройство легко изготовить самостоятельно, но чтобы сделать это, нужно знать назначение, случаи применения, принцип работы и примеры расчетов.

Назначение и применение

Для преобразования переменного напряжения применяется трансформатор, благодаря которому можно сохранить достаточно высокое значение тока. Если необходимо в электрическую цепь подключить нагрузку, потребляющую небольшой ток (до сотен мА), то использование трансформаторного преобразователя напряжения (U) не является целесообразным.

В этих случаях можно использовать простейший делитель напряжения (ДН), стоимость которого существенно ниже. После получения необходимой величины U выпрямляется и происходит подача питания на потребитель. При необходимости для увеличения силы тока (I) нужно использовать выходной каскад увеличения мощности. Кроме того, существуют делители и постоянного U, но эти модели применяются реже остальных.

Читайте также:  Плитка в туалете: выбор и укладка своими руками

ДН часто применяются для зарядок различных устройств, в которых нужно получить из 220 В более низкие значения U и токов для разного типа аккумуляторов. Кроме того, целесообразно использовать устройства для деления U для создания электроизмерительных приборов, компьютерной техники, а также лабораторных импульсных и обыкновенных блоков питания.

Принцип работы

Делитель напряжения (ДН) является устройством, в котором осуществляется взаимосвязь выходного и входного U при помощи коэффициента передачи. Коэффициент передачи — отношение значений U на выходе и на входе делителя. Схема делителя напряжения проста и представляет собой цепочку из двух последовательно соединенных потребителей — радиоэлементов (резисторов, конденсаторов или катушек индуктивности). По выходным характеристикам они отличаются.

У переменного тока существуют такие главные величины: напряжение, сила тока, сопротивление, индуктивность (L) и емкость (C). Формулы расчета основных величин электричества (U, I, R, C, L) при последовательном подключении потребителей:

  1. Значения сопротивлений складываются;
  2. Напряжения складываются;
  3. Ток будет вычисляться по закону Ома для участка цепи: I = U / R;
  4. Индуктивности складываются;
  5. Емкость всей цепочки конденсаторов: C = (C1 * C2 * .. * Cn) / (C1 + C2 + .. + Cn).

Для изготовления простого резисторного ДН и используется принцип последовательно включенных резисторов. Условно схему можно разделить на 2 плеча. Первое плечо является верхним и находится между входом и нулевой точкой ДН, а второе — нижним, с него и снимается выходное U.

Сумма U на этих плечах равна результирующему значению входящего U. ДН бывают линейного и нелинейного типов. К линейным относятся устройства с выходным U, которое изменяется по линейному закону в зависимости от входной величины. Они применяются для задания нужных U в различных частях схем. Нелинейные применяются в функциональных потенциометрах. Их сопротивление может быть активным, реактивным и емкостным.

Кроме того, ДН может быть еще и емкостным. В нем используется цепочка из 2 конденсаторов, которые соединены последовательно.

Его принцип работы основан на реактивной составляющей сопротивления конденсаторов в цепи тока с переменной составляющей. Конденсатор обладает не только емкостными характеристиками, но и сопротивлением Xc. Это сопротивление называется емкостным, зависит от частоты тока и определяется по формуле: Xc = (1 / C) * w = w / C, где w — циклическая частота, C — значение конденсатора.

Циклическая частота вычисляется по формуле: w = 2 * ПИ * f, где ПИ = 3,1416, а f — частота переменного тока.

Конденсаторный, или емкостной, тип позволяет получать сравнительно большие токи, чем с резистивных устройств. Он получил широкое применение в высоковольтных цепях, в которых значение U необходимо снизить в несколько раз. Кроме того, он обладает существенным преимуществом — не перегревается.

Индуктивный тип ДН основан на принципе электромагнитной индукции в цепях тока с переменной составляющей. Ток протекает по соленоиду, сопротивление которого зависит от L и называется индуктивным. Его значение прямо пропорционально зависит от частоты переменного тока: Xl = w * L, где L — значение индуктивности контура или катушки.

Индуктивный ДН работает только в цепях с током, у которого есть переменная составляющая, и обладает индуктивным сопротивлением (Xl).

Преимущества и недостатки

Основными недостатками резистивного ДН являются невозможность его применения в высокочастотных цепях, существенное падение напряжений на резисторах и уменьшение мощности. В некоторых схемах нужно подбирать мощность сопротивлений, так как происходит существенный нагрев.

В большинстве случаев в цепях переменного тока применяются ДН с активной нагрузкой (резистивные), но с использованием компенсационных конденсаторов, подключенных параллельно к каждому из резисторов. Этот подход позволяет уменьшить нагрев, но не убирает основной недостаток, который заключается в потере мощности. Преимуществом является применение в цепях постоянного тока.

Для исключения потери мощности на резистивном ДН активные элементы (резисторы) следует заменить емкостными. Емкостный элемент относительно резистивного ДН обладает рядом преимуществ:

  1. Применяется в цепях переменного тока;
  2. Отсутствует перегрев;
  3. Потеря мощности снижена, так как конденсатор не обладает, в отличие от резистора, мощностью;
  4. Возможно применение в высоковольтных источниках напряжения;
  5. Высокий коэффициент полезного действия (КПД);
  6. Меньшие потери по I.

Недостатком является невозможность применения в схемах с постоянным U. Это связано с тем, что конденсатор в цепях с постоянным током не обладает емкостным сопротивлением, а лишь выступает в качестве емкости.

Индуктивный ДН в цепях с переменной составляющей также обладает рядом преимуществ, но его можно использовать и в цепях с постоянным значением U. Катушка индуктивности обладает сопротивлением, но из-за индуктивности этот вариант не подходит, так как происходит существенное падение U. Основные преимущества по сравнению с резистивным типом ДН:

  1. Применение в сетях с переменным U;
  2. Незначительный нагрев элементов;
  3. Потеря мощности в цепях переменного тока меньше;
  4. Сравнительно высокий КПД (выше емкостных);
  5. Использование в высокоточной измерительной аппаратуре;
  6. Обладает меньшей погрешностью;
  7. Нагрузка, подключенная к выходу делителя, не влияет на коэффициент деления;
  8. Потери по току меньше, чем у емкостных делителей.

К недостаткам следует отнести следующие:

  1. Применение в сетях питания постоянного U приводит к существенным потерям по току. Кроме того, напряжение резко падает из-за расхода электрической энергии на индуктивность.
  2. Выходной сигнал по частотным характеристикам (без применения выпрямительного моста и фильтра) изменяется.
  3. Не применяется в высоковольтных цепях переменного тока.

Расчет делителя напряжения на резисторах конденсаторах и индуктивностях

После выбора типа делителя напряжения для расчета нужно воспользоваться формулами. При неверном расчете может сгореть само устройство, выходной каскад для усиления тока, потребитель. Последствия неправильных расчетов могут быть и хуже, чем выход из строя радиокомпонентов: пожар в результате короткого замыкания, а также поражение электрическим током.

При расчете и сборке схемы нужно четко соблюдать правила техники безопасности, проверять устройство перед включением на правильность сборки и не испытывать в сыром помещении (вероятность поражения током возрастает). Основной закон, используемый при расчетах, — закон Ома для участка цепи. Формулировка его следующая: сила тока прямо пропорциональна напряжению на участке цепи и обратно пропорциональна сопротивлению этого участка. Запись в виде формулы выглядит следующим образом: I = U / R.

Алгоритм для расчета делителя напряжения на резисторах:

  1. Общее напряжение: Uпит = U1 + U2, где U1 и U2 — значения U на каждом из резисторов.
  2. Напряжения на резисторах: U1 = I * R1 и U2 = I * R2.
  3. Uпит = I * (R1 + R2).
  4. Ток без нагрузки: I = U / (R1 + R2).
  5. Падение U на каждом из резисторов: U1 = (R1 / (R1 + R2)) * Uпит и U2 = (R2 / (R1 + R2)) * Uпит.

Значения R1 и R2 должны быть в 2 раза меньше, чем сопротивление нагрузки.

Для расчета делителя напряжения на конденсаторах можно воспользоваться формулами: U1 = (C1 / (C1 + C2)) * Uпит и U2 = (C2 / (C1 + C2)) * Uпит.

Аналогичны формулы для расчета ДН на индуктивностях: U1 = (L1 / (L1 + L2)) * Uпит и U2 = (L2 / (L1 + L2)) * Uпит.

Делители применяются в большинстве случаев с диодным мостом и стабилитроном. Стабилитрон — полупроводниковый прибор, выполняющий роль стабилизатора U. Диоды следует выбирать с обратным U выше допустимого в этой цепи. Стабилитрон выбирается согласно справочнику для необходимого значения напряжения стабилизации. Кроме того, перед ним необходимо включить в схему резистор, так как без него полупроводниковый прибор сгорит.

Что такое делитель напряжения и как он используется на резисторах?

Существуют два вида сопротивления – переменное и постоянное, а делитель напряжения на резисторах нужен для защиты электроприборов. Например, светодиодам необходим небольшой ток, в противном случае они могут перегореть. Для ограничения тока в электрическую цепь вставляется резистор, следовательно ток уменьшается и светодиоды работают в штатном режиме. Резистор – радиоэлемент для увеличения сопротивления электрической цепи. Его ставят с целью понижения напряжения или тока.

Постоянное сопротивление – резисторы, которые не изменяют свой номинал. Если подобное происходит, значит резистор вышел из строя. Переменные резисторы могут менять свое сопротивление в процессе своей работы. Они оснащены специальный бегунок, который и регулирует сопротивление. На основе их изготавливают самые различные регуляторы.

В статье будут подробно рассмотрены типы подключения и что такое делитель напряжения. Также в статье содержится видеоролик на данную тему и скачиваемый файл с дополнительной информацией.

Соединение резисторов

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике. Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов. Соединение резисторов может производиться последовательно, параллельно и смешанно.

Последовательное соединение резисторов

Последовательное соединение резисторов это такое соединение, в котором конец одного резистора соединен с началом второго резистора, конец второго резистора с началом третьего и так далее. То есть при последовательном соединении резисторы подключатся друг за другом. При таком соединении через резисторы будет протекать один общий ток. Следовательно, для последовательного соединения резисторов будет справедливо сказать, что между точками А и Б есть только один единственный путь протекания тока.

Таким образом, чем больше число последовательно соединенных резисторов, тем большее сопротивление они оказывают протеканию тока, то есть общее сопротивление Rобщ возрастает. Рассчитывается общее сопротивление последовательно соединенных резисторов по следующей формуле: Rобщ = R1 + R2 + R3+…+ Rn.

Параллельное соединение резисторов

Параллельное соединение резисторов это соединение, в котором начала всех резисторов соединены в одну общую точку (А), а концы в другую общую точку. При этом по каждому резистору течет свой ток. При параллельном соединении при протекании тока из точки А в точку Б, он имеет несколько путей. Таким образом, увеличение числа параллельно соединенных резисторов ведет к увеличению путей протекания тока, то есть к уменьшению противодействия протеканию тока. А это значит, чем большее количество резисторов соединить параллельно, тем меньше станет значение общего сопротивления такого участка цепи (сопротивления между точкой А и Б.)

Общее сопротивление параллельно соединенных резисторов определяется следующим отношением: 1/Rобщ= 1/R1+1/R2+1/R3+…+1/Rn. Следует отметить, что здесь действует правило «меньше – меньшего». Это означает, что общее сопротивление всегда будет меньше сопротивления любого параллельно включенного резистора.
Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле Rобщ= R1*R2/R1+R2

Если имеет место два параллельно соединенных резистора с одинаковыми сопротивлениями, то их общее сопротивление будет равно половине сопротивления одного из них. Данный вид подключения характерен тем, что все элементы цепи соединяется выводами в одной точке друг другу, т.е. точка входа и выхода всех нагрузок сходятся в одну точку (или еще одно обозначение на схемах — //). Электроток, двигаясь по проводнику, дойдя до общего соединения делится на количество имеющихся веток.

Каждый вид соединения находится под одинаковым напряжением:

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В. Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток. R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом. Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2 А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В. А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором — 1600 В. При этом напряжение источника питания — 4000 В.

Смешанное соединение резисторов

Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением. На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно.

Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:

Законы Кирхгофа

Первый закон

Ещё один очень важный закон — это закон Кирхгофа. Для участка цепи постоянного тока их два. Первый закон имеет формулировку: Сумма всех токов, входящих в узел и выходящих из него равна нулю. Если посмотреть на схему, I1 — это ток, который заходит в узел, I2 и I3 — это электроны, которые вытекают из него. Применяя формулировку первого закона можно записать формулу по-другому: I1-I2+I3=0. В этой формуле знаки плюс имеют значения, которые прибывают в узел, минус, который отходит от него.

Второй закон Кирхгофа

Если к цепи с включенными сопротивлениями подключен один источник ЭДС (батарея питания) тогда всё понятно, можно обойтись законом Ома. А, если, источников несколько и схема с различным схемным расположением элементов, тогда вступает в силу второй закон, который гласит: сумма токов всех источников питания для замкнутого контура, равна сумме падений напряжения на всех сопротивлениях участка в этом контуре.

Параллельное и последовательное соединение резисторов, решение задач

Алгоритм расчёта смешанных подключений находится в тех же правилах, что и в элементарных схемах расчета последовательного и параллельного соединения резисторов. Ничего нового нет: нужно правильно разбить предложенную схему на пригодные для расчета участки. Участки, с элементами, подключены поочередно либо параллельно. Для решения задачи на последовательное и параллельное соединение резисторов необходимо правильно оценить цепи элементов. На схеме присутствует параллельная и последовательная часть соединения элементов. Для расчета очень важно аккуратно, шаг за шагом упрощать цепи и не брать сразу всю схему (рис.1). Как же правильно определить параллельное и последовательное соединение резисторов?

Читайте также:  Особенности определения водоносного слоя -самостоятельно

Для примера расчета возьмем резисторы R3, R4, которые подключены параллельно. Эквивалентный резистор этих элементов, будет равенRэ. = 1/R34 =1/R3 + 1/R4, после преобразования формулы и приведения к одному знаменателю получим R34 = R3 · R4 / (R3 + R4). Э. = 1/3+1/4 /(3+4) =1,7 Ом.

Далее видно, что приведённая эквивалентное R эк и R6 соединены последовательно, чтобы узнать сопротивление их необходимо сложить, тогда общее сопротивление будет равно R346 = R34 + R6, тогда Rэк346 = 1,7 + 6 = 7, 7 Ом.

Заменяем на схеме одним общим элементом, теперь, позиция упрощается еще больше. Теперь образовалась ситуация — включение трех элементов в //. Как вычисляется такое соединение нам уже известно, 1/ R23465 = 1/ R2 +1/R346 + 1/R5 после вычисления правой части получаем 0,82 Ом. После окончательного вычисления получаем R23465 = 2,1 Ом. Здесь следует обратить внимание, что общее сопротивление получилось меньше самого меньшего из трех. Заменяем эти сопротивление одним эквивалентным R23465. В конечном итоге все выглядит уже намного проще. Rц = Rэк + R1+ R2. R об. = R ц = 1,21 +7+1 =9,21 Ом.

При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными.

Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно. На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.

Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

Расчет гасящего резистора

В схемах аппаратуры связи часто возникает необходимость подать на потребитель меньшее напряжение, чем дает источник. В этом случае последовательно с основным потребителем включают дополнительное сопротивление, на котором гасится избыток напряжения источника. Такое сопротивление называется гасящим.

Напряжение источника тока распределяется по участкам последовательной цепи прямо пропорционально сопротивлениям этих участков. Рассмотрим схему включения гасящего сопротивления:

  1. Полезной нагрузкой в этой цепи является лампочка накаливания, рассчитанная на нормальную работу при величине напряжения Uл= 80 в и тока I =20 ма.
  2. Напряжение на зажимах источника тока U=120 в больше Uл, поэтому если подключить лампочку непосредственно к источнику, то через нее пройдет ток, превышающий нормальный, и она перегорит.
  3. Чтобы этого не случилось, последовательно с лампочкой включено гасящее сопротивление R гас.

Расчет величины гасящего сопротивления при заданных значениях тока и напряжения потребителя сводится к следующему:

– определяется величина напряжения, которое должно быть погашено:

Uгас = Uист – Uпотр,

Uгас = 120 – 80 = 40в

определяется величина гасящего сопротивления

Rгас = 40 / 0,020 = 2000ом = 2 ком

Далее необходимо рассчитать мощность, выделяемую на гасящем сопротивлении по формуле

P = 0,0202 * 2000 = 0,0004 * 2000 = 0,8вт

Зная величину сопротивления и расходуемую мощность, выбирают тип гасящего сопротивления.

Практическое применение параллельного и последовательного соединения

Для чего практически можно использовать параллельное и последовательное соединение резисторов? Случается, что при ремонте электронной аппаратуры, не всегда в наличии сопротивление нужного номинала. Ехать в магазин за одним копеечным элементом — накладно. Вот тут и могут пригодиться составные резисторы. Просто надо последовательно или параллельно соединить их, подобрав требуемый номинал.

Приведем пример работы делителя напряжения на фоторезисторе. Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

При соединении резисторов, их ножки первоначально скручивают. Какой стороной разворачивать сопротивление — неважно (в отличие от диодов, резисторы одинаково пропускают ток в обоих направлениях). На концах скрутку слегка обжимают плоскогубцами, затем пропаивают. Следите за тем, чтобы корпуса были друг от друга подальше — так они будут лучше охлаждаться при работе.

Более подробно о делителях напряжения можно узнать из скачиваемого файла правила подключения проводников. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Схемы делителей напряжения

Давайте проанализируем простую последовательную схему и определим падение напряжения на отдельных резисторах:

Рисунок 1 – Схема последовательной цепи Рисунок 2 – Табличный метод. Шаг 1

По заданным значениям отдельных сопротивлений мы можем определить общее сопротивление цепи, зная, что последовательные сопротивления суммируются.

Рисунок 3 – Табличный метод. Шаг 2

Теперь мы можем использовать закон Ома (I = E/R) для определения общего тока, который, как мы знаем, будет таким же, как ток каждого резистора, поскольку токи во всех частях последовательной цепи одинаковы.

Рисунок 4 – Табличный метод. Шаг 3

Теперь, зная, что ток в цепи равен 2 мА, мы можем использовать закон Ома (E = IR) для расчета напряжения на каждом резисторе:

Рисунок 5 – Табличный метод. Шаг 4

Должно быть очевидно, что падение напряжения на каждом резисторе пропорционально его сопротивлению, учитывая, что ток одинаков на всех резисторах. Обратите внимание, что напряжение на R2 вдвое больше, чем на R1, так же как сопротивление R2 в два раза больше, чем у R1.

Если бы мы изменили общее напряжение, то обнаружили бы, что эта пропорциональность падений напряжения остается постоянной.

Рисунок 6 – Пропорциональность падений напряжения остается постоянной

Несмотря на то, что напряжение источника изменилось, напряжение на R2 по-прежнему ровно вдвое больше, чем на R1. Пропорциональность падений напряжения (соотношение между ними) строго зависит от значений сопротивлений.

При более внимательном наблюдении становится очевидным, что падение напряжения на каждом резисторе также является фиксированной долей напряжения питания. Например, напряжение на R1 составляло 10 вольт при питании от батареи 45 вольт. Когда напряжение аккумулятора было увеличено до 180 вольт (в 4 раза больше), падение напряжения на R1 также увеличилось в 4 раза (с 10 до 40 вольт). Однако соотношение между падением напряжения R1 и общим напряжением не изменилось:

Точно так же ни один из других коэффициентов падения напряжения не изменился с увеличением напряжения питания:

Формула делителя напряжения

По этой причине последовательную цепь часто называют делителем напряжения из-за ее способности пропорционально делить общее напряжение на дробные части с постоянными коэффициентами. Применив немного алгебры, мы можем вывести формулу для определения падения напряжения на последовательном резисторе, не учитывая ничего, кроме общего напряжения, сопротивления отдельного резистора и общего сопротивления.

Падение напряжения на любом резисторе:

Сила тока в последовательной цепи:

Подставляем Eобщ/Rобщ вместо In в первую формулу.

Падение напряжения на любом резисторе в последовательнй цепи:

В схеме делителя напряжения отношение отдельного сопротивления к общему сопротивлению равно отношению отдельного падения напряжения к общему напряжению питания. Эта формула известна как формула делителя напряжения, и это сокращенный метод определения падения напряжения в последовательной цепи без проведения расчетов тока по закону Ома.

Пример использования формулы делителя напряжения

Используя эту формулу, мы можем повторно проанализировать падение напряжения в примере схемы за меньшее количество шагов:

Рисунок 7 – Схема последовательной цепи

Компоненты, делящие напряжение

Делители напряжения находят широкое применение в измерительных схемах, где как часть схемы измерения напряжения для «деления» напряжения на точные пропорции используются определенные комбинации последовательных резисторов.

Рисунок 8 – Делитель напряжения

Потенциометры как компоненты, делящие напряжение

Одним из устройств, часто используемых в качестве элемента деления напряжения, является потенциометр, который представляет собой резистор с подвижным элементом, перемещаемым ручкой или рычагом. Подвижный элемент, обычно называемый ползунком, вступает в контакт с резистивной полосой материала в любой, выбранной вручную точке:

Рисунок 9 – Потенциометр

Контакт ползунка – это обращенная влево стрелка, нарисованная в середине вертикального обозначения резистора. При перемещении вверх он контактирует с резистивной полосой ближе к клемме 1 и дальше от клеммы 2, уменьшая сопротивление от него до клеммы 1 и повышая сопротивление от него до клеммы 2. При перемещении вниз происходит противоположный эффект. Сопротивление, измеренное между клеммами 1 и 2, постоянно для любого положения ползунка.

Рисунок 10 – Принцип действия потенциометра

Поворотные и линейные потенциометры

Ниже показано внутреннее устройство двух типов потенциометров: поворотного и линейного.

Линейные потенциометры

Некоторые линейные потенциометры приводятся в действие прямолинейным движением рычага или ползунковой кнопки. Другие, подобные изображенному на рисунке выше, приводятся в действие поворотным винтом для точной регулировки. Потенциометры последнего типа иногда называют «подстроечниками» потому, что они хорошо работают в приложениях, требующих «подстройки» переменного сопротивления до некоторого точного значения.

Следует отметить, что не все линейные потенциометры имеют такое же назначение выводов, как показано на этом рисунке. У некоторых вывод ползунка находится посередине между двумя крайними выводами.

Поворотный потенциометр

На изображении ниже показана конструкция поворотного потенциометра.

Рисунок 12 – Поворотный потенциометр

На фотографии ниже показан реальный поворотный потенциометр с открытыми для удобства просмотра ползунком и резистивным элементом. Вал, который перемещает ползунок, повернут почти до конца по часовой стрелке, поэтому ползунок почти касается левого конечного вывода резистивного элемента:

Рисунок 13 – Поворотный потенциометр с открытыми ползунком и резистивным элементом

Вот тот же потенциометр с валом ползунка, перемещенным почти до упора против часовой стрелки, поэтому ползунок теперь находится рядом с другим крайним концом хода:

Рисунок 14 – Потенциометр с валом ползунка, повернутым до упора против часовой стрелки

Влияние регулировки потенциометра на схему

Если между внешними выводами (по всей длине резистивного элемента) приложено постоянное напряжение, положение ползунка будет отводить часть приложенного напряжения, измеряемого между контактом ползунка и любым из двух других выводов. Значение коэффициента деления полностью зависит от физического положения ползунка:

Рисунок 15 – Потенциометр как переменный делитель напряжения

Важность потенциометров

Как и в случае с фиксированным делителем напряжения, коэффициент деления напряжения потенциометра строго зависит от сопротивления, а не от величины приложенного напряжения. Другими словами, если ручка потенциометра или рычаг перемещается в положение 50 процентов (точное центральное положение), падение напряжения между ползунком и любым крайним выводом будет составлять ровно 1/2 от приложенного напряжения, независимо от того, что с этим напряжением происходит, или каково полное сопротивление потенциометра. Другими словами, потенциометр работает как регулируемый делитель напряжения, где коэффициент деления напряжения устанавливается положением ползунка.

Это применение потенциометра является очень полезным средством получения изменяемого напряжения от источника фиксированного напряжения, такого как аккумулятор. Если для схемы, которую вы собираете, требуется определенная величина напряжения, которая меньше, чем значение напряжения доступной батареи, вы можете подключить внешние выводы потенциометра к этой батарее и «выбрать» для использования в вашей цепи любое необходимое напряжение между ползунком и одним из внешних выводов потенциометра:

Рисунок 16 – Применение потенциометра

При таком использовании название «потенциометр» имеет смысл: он «измеряет» (контролирует) приложенный к нему потенциал (напряжение), создавая изменяемый коэффициент деления напряжения. Такое использование трехполюсного потенциометра в качестве переменного делителя напряжения очень популярно в схемотехнике.

Примеры небольших потенциометров

Ниже показано несколько небольших потенциометров, которые обычно используются в бытовом электронном оборудовании, а также любителями и студентами при построении схем:

Рисунок 17 – Примеры небольших потенциометров

Меньшие устройства слева и справа предназначены для подключения к беспаечной макетной плате или для пайки в печатную плату. Устройства посередине предназначены для установки на плоской панели с проводами, припаянными к каждому из трех выводов.

Ниже показано еще три потенциометра, более специализированных, чем только что показанный набор:

Рисунок 18 – Примеры потенциометров размером побольше

Большое устройство «Helipot» – это лабораторный потенциометр, предназначенный для быстрого и легкого подключения к цепи. Устройство в нижнем левом углу фотографии представляет собой потенциометр того же типа, только без корпуса и поворотного счетного диска. Оба этих потенциометра представляют собой прецизионные устройства, в которых используются многооборотные спиралевидные резистивные ленты и ползунковые механизмы для точной регулировки. Устройство в правом нижнем углу представляет собой потенциометр для монтажа на панели, предназначенный для работы в тяжелых промышленных условиях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *