Простая и надёжная схема терморегулятора для инкубатора

ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать R3 можно по таблице ниже.

Терморегуляторы для инкубаторов

Строгое соблюдение температурного режима является главным условием искусственного высиживания цыплят и их дальнейшего выращивания. Для этих целей необходимо купить терморегулятор для инкубатора, который позволяет с высокой точностью контролировать степень нагрева камеры.

Специальный корпус из пластика

Отличный маленький терморегулятор с настройками

Данный блок питания рассчитан на подключение максимальной нагрузки до 5 Ватт.

Универсальный электронный терморегулятор с влагозащитой передней панели.

“Таймер цифровой бескорпусный TR 12v”

Для любых инкубаторов.Контроль температуры,влажности.
Вентиляция,
сигнализация,переворот яиц.

Универсальный электронный терморегулятор с влагозащитой передней панели, точность 0,1С, макс. нагрузка 7А, 1500 Вт.

Уникальный контроллер, который позволяет контролировать одновременно и температуру и влажность.

Пид-регулятор, идеален для инкубаторов и точного регулирования температуры 0,1С.

Применяется в содержании животных,брудерах для цыплят,теплицах и тд.Управление температурой

Аналог терморегулятора 112Е-10А, но только рассчитанный под большую силу тока (30А).

Диапазон измеряемых температур
-55. +125 град. С

Комплектация:
– Контроллер для инкубатора XM-18 mode 3
– Датчик температуры
– Датчик влажности

Основные функции :
Одновременный контроль и управление температурой и влажностью с высокой точностью;
Новый сверхбыстрый и точный сенсор серии SHr04

Для инкубаторов, теплиц, вентиляции. Популярная модель для регулировки температуры, оснащен сигнализацией.

220 В, 16 А, термодатчик 2 м. Популярная модель для регулировки температуры, оснащен сигнализацией.

Терморегулятор для инкубатора – главный компонент автоматизированной системы

Регулирование температуры может осуществляться двумя принципиально разными по принципу действия устройствами. В термореле главный элемент биметаллическая пластина, которая при нагреве и охлаждении изменяет свою форму, переключая контакт питания ТЭНа или кулера. Такая схема является устаревшей, поскольку она громоздка и требует сложной подстройки.

На сегодняшний день все современные инкубаторы оснащаются цифровыми устройствами контроля температуры, состоящими из датчика и программируемого блока. Электронный термодатчик представляет собой прибор, внутри находится вещество, изменяющее свое сопротивление при колебаниях температуры. Как правило такой термопреобразователь располагают в герметичной металлической капсуле (защищающей его от повреждения и воздействия влаги) в которую заделан соединительный кабель с двумя или тремя соединительными проводами. Наличие дополнительной жилы позволяет отдельно считывать сопротивление проводников и вносить соответствующую корректировку.

Больше функций для оптимального результата

Цифровой терморегулятор для инкубатора оснащается программируемым блоком с дисплеем и кнопками управления. Даже самая простая его модификация выполняет несколько функций:

Но поскольку в инкубаторах имеется множество электронных компонентов, то терморегуляторы оснащают дополнительными функциями, существенно расширяющими их возможность:

Использование чувствительных датчиков и процессорной обработки поступающих с них сигналов позволяет с высокой точностью контролировать температуру и влажность. Вариативность управления различным оборудованием дает возможность запрограммировать несколько режимов работы для конкретных условий (разные стации инкубации или породы птиц). Благодаря многофункциональности терморегуляторов обеспечивается максимальный уровень автоматизации, что в итоге обеспечивает высокую вылупляемость птенцов.

Наш специализированный сайт оборудования для птицеводства предлагает купить регуляторы температуры для инкубаторов, представленные в широком ассортименте разнообразных моделей. Мы поможем выбрать прибор, оптимально подходящий вашим запросом и доставим его по указанному адресу в любой город России.

Схема терморегулятора для инкубатора своими руками

Приведенная ниже схема является развитием темы симисторного регулятора мощности. В данном случае добавляются термочувствительный и нагревательный элементы благодаря которым и поддерживается требуемая температура. Включая-отключая нагрузку, которой служит электронагреватель, терморегулятор регулирует температуру микросреды инкубатора, аквариума или другого замкнутого пространства.

Схема терморегулятора

Принцип работы терморегулятора

Итак, рассмотрим как работает схема терморегулятора для инкубатора своими руками: основой данного устройства является операционный усилитель DA1, работающий в режиме компаратора напряжений. На один вход подается изменяющееся напряжение с терморезистора R2, а на второй, задаваемое переменным резистором R5 и подстроечным R4. Для точной и грубой регулировки. В зависимости от области применения, подстроечный резистор можно и исключить.
При равенстве входных напряжений транзистор VT1, управляемый выходом компаратор – закрыт, на управляющем электроде VS1 ноль, а значит закрыт и симистор. При изменении температуры меняется сопротивление R2, а на разницу напряжений на входах компаратор отреагирует подачей открывающего сигнала на VT1. Появившееся на R8 напряжение откроет тиристор, пустив через нагрузку ток. Когда напряжения на входах операционного усилителя выравняются, он отключит нагрузку.
Питание управляющего каскада осуществляется через выпрямительный диод VD2 и гасящее сопротивление R10. При его сверхмалом потреблении тока – это вполне допустимо, как и использование для стабилизации питающего напряжения всего одного стабилитрона VD1. К тому же, управляющие цепи запитываются через нагрузку, на которой тоже происходит падение напряжения, особенно в нагретом состоянии.

Замены деталей

Обратите внимание на мощность резистора R10 — 2Вт, так же этот резистор должен выдерживать мгновенное напряжение 400В, если такой резистор не удается найти, его можно заменить несколькими последовательно включенными резисторами на меньшую мощность и напряжение.
В качестве стабилитрона VD1 можно установить BZX30C12 или любой другой стабилитрон на 12В близкий по параметрам.
Вместо VD2 можно поставить диод с обратным напряжением не менее 400В и током не менее 0,3А: например из серии 1N4004 — 1N4007
На место DA1 можно установить практически любой операционный усилитель, главное чтобы он работал в диапазоне питающих напряжений 10..15В.

А вот однопереходный транзистор КТ117 (VT1) не такой общераспространенный компонент электронных схем (зарубежные однопереходные транзисторы: 2N6027, 2N6028), зато его можно заменить схемой из двух биполярных транзисторов разной структуры и одного резистора 47 кОм. В схеме используются распространенные КТ315 и КТ361, но вполне могут использоваться и другие маломощные комплиментарные биполярные транзисторы.

Области применения терморегулятора

В основном, данное устройство применялось для термостабилизации птичьих инкубаторов. Где в роли тэнов выступали маломощные электрические лампочки по 60 Вт, соединенные параллельно по 4, 6 и 8 штук, в зависимости от размеров инкубатора и количества инкубируемых яиц.

Как монтировать обогреватель для инкубатора

Обогреватель для аквариума

Реже, такой терморегулятор применялся для поддержания заданной температуры в аквариумах с тропическими рыбками. Такая необходимость возникала из-за того, что большинство, выпускаемых для этих целей термообогревателей, имеет механический терморегулятор объединенный с тэном в одном корпусе. А следовательно, они поддерживают в заданных пределах свою, а не окружающую температуру. Это хорошо работает только в помещениях со стабильной, в пределах одного-двух градусов, своей температурой воздуха.

Особенности монтажа

Можно найти и другие сферы применения данному, несложному в изготовлении устройству. К примеру для рассадных парничков, сушильных шкафов, различных термованночек. На что вашей фантазии хватит. Только, если нагрузка допускает возможность короткого замыкания, необходимо добавить плавкий предохранитель на 1 А.

P.S.
Как говорилось выше данный простой терморегулятор применялся в инкубаторах раньше, сейчас на его смену пришли терморегуляторы с микроконтроллерным управлением, способные в автоматическом режиме понижать температуру в течении цикла инкубации. Да и сами инкубаторы обзавелись функцией регулирования влажности и переворачивания яиц.

16 thoughts on “ Схема терморегулятора для инкубатора своими руками ”

За микроконтроллерами будущее, не спорю, спасибо Гарвардской архитектуре вообще и Микрочип Технолоджи в частности. Но везде ли рентабельно их применение, с их-то возможностями. Сами-то они не дороги, но необходимая им периферия может быть разной. Да и без знания программирования на низком, машинном уровне — браться за них не стоит. Одним словом — чип для профессионалов и профессионального использования.
Но осваивать цифровые технологии необходимо и любителям, конечно, куда сейчас без них.

Видел инкубатор со схемой которая намного проще, где используется маломощный закрытый нагреватель и тепловое реле-регулятор. Конечно эта схема хорошая, но для любителя сложновата, ведь её надо ещё настроить.

Эту схему настраивать не нужно, заработать должна сразу. Вот подстраивать температуру нужно будет.
Если брать готовый регулятор, то и паять ничего не нужно: просто прикрутить провода к клеммам и готово. Кстати терморегулятор с цифровым индикатором, микропроцессором и датчиком температуры на алиэкспрессе можно купить что-то около 2 долларов. Долларов за 10-15 можно взять терморегулятор для теплого пола с графиком изменения температуры в течении суток и по дням недели.

Если для простенького инкубатора, то можно и за 2$, а лучше за 3-4, с задачей температурного люфта, чтоб лампочки не «дребежжали» из-за чувствительности датчика. Для хорошего, хорошо брать с полным графиком (и памятью на несколько) за 15-20$, чтоб задать полный цикл на весь период инкубации (для разных птиц), а к тенам подключить тихоходный (или редукцированный ) движок переворотки.
Но, по-настоящему хорошо — изучать pic-процессоры и создавать на их базе свои устройства, любой функциональности. А на алиэкспрессе можно купить программатор.

Микроконтроллеры штука хорошая, но когда речь идет о живых душах, лучше проще но надежнее на мой взгляд. Дабы яйца не заморозить или рыбок аквариумных не сварить.
Потому как бывает, что прошивку вылизываешь до блеска, мплаб и протеус аж дымятся от симуляции, и макет казалось бы работает. А вот складываются вдруг однажды некие условия, в которых программа заходит в тупик и устройство на МК впадает в маразм. И что характерно, прямо на ровном месте, там где казалось бы ничего не должно случится. Однако же не досмотрел какой-то из возможных вариантов, и пожалуйста — глюк. Терморегулятор с компаратором уж точно не заглючит при исправных деталях.

Читайте также:  Паяльная станция с феном: полезный помощник для мастера

А можно ли использовать подобный(близкий к этому)принцип для создания токового реле нагрузки,но с 12 вольтовым питанием устройства

Да, даже проще получиться не нужен будет стабилитрон и мощный резистор, однопереходной транзистор, а вместо симмистора — MOSFET (если нагрузка небольшая то можно и биполярным транзистором обойтись).

Для любителя-новичка эта схема не столько сложна, сколько опасна — в ней нет гальванической развязки с сетью питания! Выполнять ее монтаж нужно очень грамотно, аккуратно и качественно.

Компаратор без гистерезиса и достаточно мощный нагреватель не дадут неожиданных эффектов для приборов работающих по соседству? Я делал похожий для обогрева кожуха уличной аналоговой камеры. Но нагреватель был сделан из резисторов МЛТ и в качестве ключа мощный биполярный резистор (питание нагревателя 15 вольт). В ходе переключения компаратора «дребезг» был такой, что несколько секунд невозможно было ничего разобрать на видеозаписи с камеры. А в морозную погоду эти дребезги каждые несколько минут возникали. Помехи от многочисленных переключений на пороге срабатывания компаратора. Пришлось камеру снимать, допаивать навесом на плату резистор между выходом и неинвертирующим входом для обеспечения гистерезиса. Инкубатор и аквариум, конечно, не камера, но мало ли чего с ними в одну розетку будет подключено…

Естественно, дребезг переключений — основной недостаток данного устройства. И чем выше чувствительность и безинерционность термодатчика — тем он более ощутим. Об этом стоит помнить и, если это создает неудобство, то устранять, хотяя бы приведенным Root методом.
В закрытых, теплоизолированных от внешних условий системах с «тугими» термодатчиками, данная проблема особых неудобств не представляет.
Не стоит забывать и о том, что в те давние времена особочуствительной электроники практически не было.

Привет всем! кто может под заказ сделать плату для инкубатора?

Непонятно — а зачем в схеме симистор? Ведь управление идёт только во время одной полуволны?
КУ?

Резонно, в данной схеме можно обойтись тиристором, например КУ202Н.

Нет, нельзя. Управление симистором происходит в момент зарядки конденсатора С1, а так же при разряде этого конденсатора, в следствии чего через симистор на нагрузку проходит весь период переменного напряжения сети. Через КУ202 пройдет только пол периода.

Управление симистором происходит в момент заряда конденсатора С1, так и в момент разряда этого конденсатора, то есть через симистор на нагрузку проходит весь период переменного напряжения сети.

Здравствуйте. Я ещё любитель по этому у меня вопрос. А можно в место микрашки усилителя кр140уд6 поставить кр140уд1б? И в этом случае меняются ли указанные ножки? Заранее спасибо. Схема классная

Терморегуляторы для инкубатора

За основу первой схемы (рис. 1) взята перепечатка в журнале «Радио» (1970, № 10 из radio serkehen elektronik).
Для повышения точности поддержания температуры и надежности силовой части внесены изменения и дополнения. Транзистор VT2 нагружен на резистор, а не на реле. Добавлены резисторы R9 и R10, транзистор VT3, цепь включения нагревателя через тиристор, включенный в диагональ диодного моста.

Терморегулятор собран по мостовой схеме. Терморезистор включен в одно из плеч моста, остальные плечи которого состоят из резисторов R4R5-R6-R2R3. В одну из диагоналей моста подается питание, а в другую включен переход база—эмиттер транзистора VT1.
Напряжение на резисторе R6 составляет примерно 5,6 В. Если прибавить к нему пороговое напряжение транзистора VT1, будет получено напряжение переключения.

Работа схемы. При температуре в инкубаторе ниже номинальной напряжение на базе VT1 мало, транзисторы VT1 и VT2 закрыты, а транзистор VT3 открыт. Через обмотку реле проходит ток, его нормально разомкнутые контакты замкнуты, они включают цепь управления тиристора. Тиристор открыт, цепь нагревателя включена, в инкубаторе идет нагрев.
При достижении заданной температуры сопротивление терморезистора уменьшится, напряжение на базе VT1 увеличится. Транзистор VT1 откроется, через цепь R6, переход эмиттер — коллектор VT1, резисторы R5R6 проходит ток. На резисторе R4 создается падение напряжения, оно плюсом приложено к базе, а минусом через резистор R7 — к эмиттеру VT2. Транзистор VT2 откроется и открытым переходом коллектор-эмиттер соединит базу VT3 с его эмиттером через малое сопротивление резистора R7. Транзистор VT3 закроется, реле обесточит-ся, его контакты разомкнут цепь управления тиристора, тиристор закроется, нагреватель выключится.
Переменный резистор R3 служит для задания необходимой температуры.
Для питания схемы подойдет любой стабилизатор, обеспечивающий ток более 150 мА. Стабилизатор может быть включен как в цепь минуса, так и в цепь плюса питания. Удобно применить интегральный стабилизатор КР145ЕН8Б или КР145ЕН8Д.

Детали. Терморезистор КМТ-1 или СТ1-17. Допускается включение нескольких последовательно включенных терморезисторов с общим сопротивлением 8,2 к. Реле РЭС-10, паспорт РС4.524.302. Можно применить любое реле с током срабатывания до 50 мА при напряжении 12 В и контакты которого рассчитаны на коммутацию 220 В. Транзистор VT1 можно заменить на КТ361Е, КТ3107 с любой буквой, VT2, VT3 на КТ315Е, КТ3102 с любой буквой. Диод VD1 можно заменить на любой из серии Д226, КД105, Д7Г-Ж. Диоды моста можно заменить наКД203, Д246 и другие с максимально допустимым током 5 А и более и обратным напряжением 400 В и более.
Тиристор и диоды необходимо установить на радиаторы. Мощность нагревателя не должна превышать 1500 Вт.
Резистор R3 типа СП-1 с функциональной характеристикой вида А. Резисторы могут быть УЛМ-0,125, ВС-0,125, МЛТ-0,125. Резистор R11 МЛТ-1. Резистор R7 типа МОН, ТВО-0,125. Его можно изготовить самостоятельно, намотав на резисторе типа МЛТ необходимое количество провода с высоким удельным сопротивлением.

Налаживание. Перед включением необходимо проверить схему на отсутствие ошибок в монтаже, обратив внимание на правильность подсоединения выводов транзисторов, диодов. Нежелательно на первом этапе настройки низковольтной части подключать цепь 220 В. Если вместо реле РЭС-10 будет применено другое реле, то, возможно, потребуется подобрать величину резистора R10 такой, чтобы ток транзистора был достаточным для срабатывания реле, но не более. Чем меньше сопротивление резистора R10, тем больше ток коллектора VT3, и наоборот.
Для проверки работы схемы подают питание и держат терморезистор над прогретым паяльником, не касаясь его. Через несколько секунд слышно, как сработает реле. Убрать паяльник от терморезистора — через несколько секунд реле снова сработает.
Если реле не сработает, то допускается кратковременное соединение эмиттера и базы VT2. При этом реле должно срабатывать. Если реле не срабатывает (не слышно щелчков), то нужно проверить исправность VT2, VT3. Если же при кратковременном соединении реле срабатывает, а при нагреве терморезистора оно не срабатывает, то нужно проверить исправность VT1.
Монтаж может быть любым. Смонтировав схему, ее нужно поместить в корпус из изоляционного материала, подсоединить блок к монтажу инкубатора. Терморезистор следует разместить на уровне лотка.
Вторая схема подойдет для тех, кто не может приобрести терморезистор по каким-либо причинам.
В качестве термочувствительного элемента задействованы контакты датчика ТМ103. Он применяется в автотракторной технике как датчик контрольной лампы перегрева воды в радиаторе. Он отлично подходит для терморегулятора, чего не скажешь о датчике ТМ101. Не нужно тратить времени на опыты. Проверено, что датчикТМ101 не годится для терморегулятора, хотя его контакты работают на размыкание, а не на замыкание, как у ТМ103.
Для того чтобы обеспечить малый ток через контакты и инвертировать работу контактов, датчик включен в несложную схему (рис. 2) параллельно резистору R2.

Работа схемы. При пониженной температуре контакты датчика разомкнуты, на базу транзистора VT1 подано напряжение, он открыт, реле включено. Его нормально разомкнутые контакты замкнуты, они замыкают цепь управления тиристора, тиристор открыт, цепь нагревателя включена.
При достижении заданной температуры, которая устанавливается регулировочным винтом на контактах датчика, контакты замкнутся, транзистор закроется, реле разомкнет цепь управления тиристора и цепь нагревателя выключится.
Датчик необходимо разобрать, для этого его граненая часть зажимается в тисках и тонкий латунный стакан отрезают по окружности на малую глубину ножовкой по металлу или напильником. Из стакана вынимают контакты. Длинный вывод подвижного контакта применяется для крепления контактов в инкубаторе. К контактам припаивают провода. Регулировка датчика не составляет труда. При вращении регулировочного винта отверткой с тонким лезвием по часовой стрелке температура в инкубаторе понижается, при вращении против часовой стрелки — повышается. Следует избегать деформаций подвижного контакта.
В инкубаторе контакты следует располагать таким образом, чтобы был удобный доступ к регулировочному винту и свободное движение подвижного контакта.
Как недостаток следует отметить, что, как показал опыт, после вывода цыплят в инкубаторе остается пух, который, попав между контактами, может нарушить работу терморегулятора. Поэтому после вывода цыплят необходимо проводить влажную уборку.
Такая схема успешно отработала у меня два сезона. Нужно помнить, что в обеих схемах контакты реле, тиристор, диоды моста находятся под напряжением сети, поэтому, проводя регулировку, нужно соблюдать правила техники безопасности.
Перед первой закладкой яиц в инкубатор необходимо проверить работу инкубатора в течение 1—2 суток, контролируя температуру по термометру.

Терморегулятор для инкубатора своими руками

Нельзя не признать, что возможность дополнительного дохода интересует многих. В условиях кризиса шанс получить независимый финансовый источник многого стоит. Неудивительно, что всё больше людей обращают свои взгляды на сельское хозяйство. При действующей политике импортозамещения производить пищевую продукцию выгодно. Мало того, это даёт возможность значительно сэкономить на покупке товаров первой необходимости.

Одним из самых эффективных методов ведения сельского хозяйства — является разведение птицы. Во-первых, для этой деятельности требуется минимум свободного пространства. Во-вторых, стоимость содержания пернатых несравнима со средствами, которые нужно потратить на животных.

Ещё одной причиной, по которой всё больше людей желают завести себе курей или гусей заключается в том, что их можно содержать даже в квартире. Тем не менее этого лучше не делать, так как соседям вряд ли понравится данный факт. Другое дело выведение птенцов и их последующая продажа. Всё что необходимо для этого — инкубатор с терморегулятором, который можно сделать своими руками.

Что такое инкубатор, и как его сделать

Начать нужно с подбора подходящей конструкции, которая сможет удерживать тепло, и при этом внутри должна быть хорошая вентиляция. Лучше всего для этих целей подходит простой холодильник. При должной сноровке в него можно поместить около ста яиц.

Очень важную роль в инкубаторе, со встроенным терморегулятором, который вы сделали своими руками, играет освещение. Чтобы обеспечить нужную температуру вам понадобится не менее четырёх основных ламп по сто ватт каждая и две дополнительных по 60.

При создании инкубатора с терморегулятором своими руками световые элементы нужно располагать по периметру. Это поможет добиться наиболее равномерного обогрева всей площади.

Вентиляции также нужно уделить дополнительное внимание. Внутри можно установить вентилятор или же обойтись вытяжкой. Чтобы понять, как лучше поступить именно в вашем инкубаторе с терморегулятором, сделанным своими руками, нужно измерить температуру на расстоянии одного сантиметра от каждой ячейки. Средний показатель должен находиться в диапазоне от 37,3 до 38,6.

В случае, когда температурные показатели не отвечают норме, нужно по-другому организовать внутреннее пространство. Переустановите ламы, закройте вытяжку, попробуйте прикрепить внутри вентилятор.

Ещё одним важным элементом инкубатора с терморегулятором, который вы сделали своими руками, является переворачивающий механизм. Это устройство каждый час будет переворачивать яйца на другую сторону, чтобы обеспечить равномерное развитие птенцов.

Многие разводчики домашней птицы отказываются от автоматического механизма в инкубаторе с терморегулятором, сделанным своими руками. Безусловно, такое решение позволяет немного сэкономить, но учтите, что вам не менее четырёх раз в день нужно будет переворачивать яйца. Но даже при этом того эффекта, которого позволяет добиться автоматическая система вам не достичь.

Дело в том, что если вы хотите делать продукцию на продажу, то должны учитывать изменения потребительского спроса. У вас должна быть возможность использовать разные яйца, к примеру, перепелиные или гусиные.

Обычные лампы внутри инкубатора с термостатом лучше своими руками размещать на расстоянии не менее 25 сантиметров друг от друга. Если речь идёт о нихромовой проволоке в качестве нагревательного элемента, то хватит и 10.

Особенности работы терморегуляторов

Итак, для того чтобы инкубатор, сделанный вашими руками работал как часы, вы должны заранее решить, каких именно птенцов будете выводить. Дело в том, что срок инкубационного периода у яиц разных птиц отличается. К примеру, для того чтобы вывести утят вам понадобится один временной отрезок, а для цыплят совсем другой.

Если температурный режим при выведении будет соблюдаться неправильно, то птенцы не просто вылупятся не вовремя, но и будут слабыми. В процессе их развития во много раз возрастает риск появления каких-либо физических отклонений.

Мало того, гусиные яйца требуют специальный температурный режим, который способен обеспечить далеко не каждый терморегулятор для инкубатора, который вы создадите своими руками.

Современные терморегуляторы способны определять температуру с погрешностью в 0,1 °C. Проще говоря, в лабораторных условиях удаётся воспроизвести режим, который полностью соответствует температуре в гнезде наседки.

Читайте также:  Особенности и характеристики утеплителя Rockwool Скандик

Погрешностью в 0,1 °C обладают исключительно цифровые терморегуляторы. У ртутных и спиртовых этот показатель гораздо выше. В результате их не всегда можно использовать. Особенно если вы занимаетесь выведением экзотической птицы.

При работе с электронным устройством в инкубаторе, сделанном своими руками, при поднятии температуры срабатывает специальный датчик. После чего нагрев отключается. Мало того, то же происходит и при охлаждении воздуха внутри инкубатора.

Во время работы инкубатора внутрь должен быть обеспечен бесперебойный приток свежего воздуха. Мало того, недостаточно контролировать температуру внутри инкубатора, нужно чтобы в помещении было не более 25 градусов по Цельсию.

Чтобы вы получили здоровых птенцов необходимо особое внимание уделить дню закладки яиц. Именно от него во многом зависит результат всех ваших трудов. Первый день нужно строжайше соблюдать температурный режим. Малейший перегрев приведёт к смерти эмбриона. В итоге инкубатор, сделанный своим руками, проработает весь оставшийся период вхолостую.

Купленный терморегулятор или сделанный своими руками

Перед тем, как приступить к созданию терморегулятора для инкубатора своими руками, вы должны знать, что это довольно сложный и кропотливый процесс, требующий внимательности и изучения технических материалов.

Если вы купите инкубатор с терморегулятором, то он будет с минимальной погрешностью задавать нужную температуру. Это даст гарантию того, что первая кладка не будет потеряна.

«Идеальная наседка»

Чтобы понять стоит ли вам делать инкубатор с терморегулятором своими руками, рассмотрим, какие устройства можно купить на рынке, а также, их плюсы и минусы. Начнём этот не большой обзор с устройства под названием «Идеальная наседка». К его плюсам можно причислить:

За один раз в такой агрегат можно поместить до 280 яиц. Цена аппарата колеблется в диапазоне от 3 до 4 тысяч. При этом он не имеет защиты от отключения энергии. Из-за чего без постоянного присмотра птенцы могут погибнуть.

«Блиц 48»

Чтобы вы имели возможность более объективно рассмотреть возможность приобретения инкубатора с терморегулятором или создание его своими руками, рассмотрим ещё одну модель — «БЛИЦ 48».

Устройство отлично подходит для выведения, как перепёлок, так и курей. Также при желании вы можете поместить внутрь инкубатора с терморегулятором яйца гусей. Данная система являет полностью автоматизированной и обладает такими достоинствами:

Данный инкубатор со встроенным терморегулятором обладает практически всеми возможными достоинствами. Тем не менее недостатки у него также есть. Это большой вес, необходимость отдельно докупать аккумулятор и большие габариты. К тому же сложность в управлении отпугивает многих потенциальных покупателей.

Делаем терморегулятор для инкубатора своими руками

Для начала разберёмся, что, собственно, такое терморегулятор для инкубатора? Это устройство, которое отвечает за выстраивание температурного режима внутри конструкции. Оно не только фиксирует количество градусов внутри ёмкости, но и при необходимости запускает нагревательный элемент.

Сразу нужно сказать, что существуют и заводские терморегуляторы, но они идут в комплекте с готовыми инкубаторами. Цена подобных устройств, конечно же, немаленькая, особенно, если брать во внимание простоту конструкции. Неудивительно, что большинство начинающих птицеводов решают всё сделать своими руками.

Есть два основных способа смастерить терморегулятор для инкубатора своими руками: электротехнический и посредством термостата. Первый требует специальных знаний и под силу только людям, профессионально занимающимся радиоэлектроникой. Подробнее вы можете узнать об электронном терморегуляторе из видео снизу:

Совсем другое дело терморегулятор для инкубатора, который вы создадите при помощи обычного термостата. Процесс состоит из таких этапов:

  1. Найдите термостат. Обычно такие устройства устанавливаются в бытовой технике, к примеру, стиральной машине. В утюге он также есть.
  2. Как бы это странно ни звучало, но для начала вам нужно будет вывести из строя термостат, который в будущем станет частью терморегулятора для инкубатора, который вы создадите своими руками. Поэтому распаяйте корпус и промойте его изнутри.
  3. Наполните термостат эфиром. После запаяйте конструкцию. В результате вы сможете смастерить терморегулятор своими руками. Он будет обладать большой чувствительностью к температуре. Мало того, при необходимости эфир будет сужаться или расширятся.
  4. Прикрепите к термостату пластины. При изменении температуры агрегат будет воздействовать на контакты.
  5. При расширении будет замыкаться электрическая цепь. В результате этого температурный режим изменится.

Как видите, простейший терморегулятор для инкубатора можно создать своими руками без каких-либо трудностей. Только не забудьте провести его настройку. Между контактами нужно создать расстояние, гарантирующее максимальную чувствительность

Итоги

Терморегулятор для инкубатора можно смастерить своими руками без каких-либо сложностей. При наличии старого утюга это будет практически бесплатно. Его термостат отлично послужит в качестве основного элемента будущей конструкции.

Терморегулятор для инкубатора: устройство, принцип работы, как сделать своими руками

Что такое терморегулятор?

Терморегулятор – это устройство, позволяющее автоматически контролировать и поддерживать необходимую температуру (а также влажность) посредством датчиков и нагревательных устройств в условиях инкубатора.

Все это необходимо для того, чтобы отслеживать перепады условий окружающей среды и компенсировать их. Ведь во время инкубации важно поддерживать определённые условия.

По сути это был гигрометр для инкубатора с управляющей блок-схемой, который достаточно сильно облегчил процесс выведения особей. До изобретения терморегулятора, температуру воздуха внутри инкубатора приходилось настраивать вручную, делалось это просто, для изменения температуры нужно было всего отрегулировать величину открытия дверцы или вентиляционных приспособлений, если те были предусмотрены в строении.

Этот метод был достаточно себе эффективен, но все же требовалось постоянное внимание человека, постоянный контроль за показателями температуры воздуха и влажности внутри инкубатора, что было достаточно проблематично.

Именно тогда люди, занимающиеся выведением домашних птиц, были очень сильно заинтересованы в устройстве, которое бы выполняло контролирование всех этих показателей, вместо человека. Некоторые умельцы сами придумывали и разрабатывали конструкции и схемы, управляющие этим самым процессом, но инициатива была подержана производителями техники.

Без терморегулятора было трудно, ведь этот контроль был довольно рутинной задачей. Если бы в то время появился простой терморегулятор, то можно было достаточно сильно облегчить жизнь фермерам.

Основное назначение этого устройства

“Высиживание” яиц посредством инкубатора квочка достаточно трудоемкий и длительный процесс. Бывает, что вообще ничего не получается и все зародыши просто погибают, еще не вылупившись.

Поэтому и был изобретен датчик температуры для инкубатора, что позволило снизить риск и повысить продуктивность выведения особей.

Все это позволяет придерживаться норм температурных режимов, ведь любое, даже, на первый взгляд незначительное отклонение, от нормальной температуры может привести к значительному уменьшению будущего поголовья.

Устройство и принцип его работы терморегулятов

Как работает терморегулятор для инкубатора? Температура посредством термодатчика контролируется в реальном времени и изменение температуры внутри инкубатора также происходит моментально. Как только температура начинает изменяться, то есть в данном случае снижается, то на нагревательные элементы подается напряжение до тех пор, пока температура не достигнет необходимой.

В случае какого-либо сбоя, выхода из строя нагревательных устройств, такой прибор подает специальный сигнал, привлекает внимание человека, сообщает о том, что есть риск потери всех особей.

Получается, что в этом приборе одни показатели напрямую влияют на другие. Заложен принцип обратной связи, если температура и влажность в пределах нормы, тогда ничего изменяться не будет. Если же температура окружающей среды упадет ниже допустимой, то устройство подаст определенное напряжение на нагревательные элементы, чтобы поднять температуру внутри инкубатора, об этом было сказано выше.

Как подключить? Все очень просто, если в данном инкубаторе для нагрева используется нагревательный тэн или обычные лампы накаливания, то они подключаются к устройству, а устройство в сеть.

Управлять ими не составит никакого труда. Все это делаться очень просто, для изменения интенсивности нагрева нужно всего лишь изменить напряжение, подаваемое на эти самые обогревательные элементы.

Когда контроль производиться вручную также можно изменять интенсивность нагрева, но получается, что контролировать эти значения нужно постоянно, в случае же, когда установлен терморегулятор этого делать не приходится. Как подключить регулятор для инкубатора? Как уже было описано он подключается в сеть и к нагревательным эл. элементам.

Любой терморегулятор состоит из нескольких основных частей:

  1. Термометр (гигрометр для инкубатора) – позволяет получать значения температуры воздуха и передавать их на основной блок управления. Может быть встроенным в сам, основной блок;
  2. Основной блок управления – зависит от того, какого типа прибор. На него подается основное напряжение, выводится на нагревательные устройства. На главном же блоке настраиваются основные параметры;
  3. Устройство нагрева – то, что будет преобразовывать электрическую энергию, тем самым нагревая воздух в инкубаторе. Для этого хорошо подходят лампы накаливания, так как точно можно отрегулировать, нагрев и они достаточно долговечны. Также используются и нагревательные тэны, они выполняют ту же самую функцию, нагревают воздух, только в данном случае за счет того, что какой-то проводник обладает сопротивлением. Происходит нагрев этого проводника, соответственно и воздуха.

Главным преимуществом является то, что на основном блоке управления можно выставить верхнюю и нижнюю границу допустимых температур. То есть весь процесс полностью контролируется человеком. С помощью этого же гигрометра для инкубатора терморегулятор понимает, когда нужно повысить интенсивность нагрева, а когда вообще отключить. Как только температура снова начинает снижаться нагрев возобновляется.

Автоматика делает абсолютно все за человека. Остается последний вопрос, только как подключить правильно? Ранее уже обговаривалось, что нужно подключить терморегулятор к сети и обогревателям, но выполнять это необходимо в соответствии с прилагаемой к устройству инструкцией! Также нужно выставить верхние и нижние пределы и устройство начнет свою работу.

Получается, что лампы или другие нагревательные элементы будут включаться и отключаться в соответствии с показаниями датчика для инкубатора и будут поддерживать заданную, комфортную температуру, которая необходима для выведения домашней птицы.

Основные виды

Что требуется от терморегулятора? Конечно же, чтобы он выполнял свою основную задачу стабильно и без больших погрешностей. Главное, чтобы температура измерялась стабильно и правильно, соответственно важно, чтобы она и поддерживалась в заданных диапазонах.

Все терморегуляторы, предоставленные на рынке достаточно, стабильно работают, но все же есть некоторые особенности, в соответствии с которыми нужно выбирать модель прибора.

Сейчас все устройства данного типа, предоставленные на рынке, делятся на два вида:

Также, еще в дополнение к цифровым можно отнести терморегуляторы с двухпозиционным контролем. Они умеют измерять и контролировать не только температуру, но и влажность воздуха в инкубаторе. Обычно они предназначены для специальных инкубаторов. К примеру, если это автоматический инкубатор, и он имеет дополнительные функции: простые, с переворотом яиц или поддержания влажности и другие…

Готовые терморегуляторы от производителей техники

Название модели терморегулятораЦенаЕго описание
Мечта – 1.2500 – 3000 руб.Самая популярная модель из всех терморегуляторов. Обладает функцией переворачивания, контролирует не только термодатчик, но и датчик влажности. Работает в абсолютно любых условиях. Имеет в своем строении цифровой дисплей.
Овен.От 4000 руб.Пид – регулятор, изначально не предназначенные для использования в инкубаторах. Но умельцы давно нашли ему применение. Обычно используется в масштабных целях (производственных).
TCB4S-24RОт 3500 руб.Обладает пид-регулятором, имеет два цифровых дисплея, отличается своей высокой точностью в показаниях.
LILYTECH ZL-6210A (7А)от 1200 руб.Влагозащищенный терморегулятор с пределом по силе тока в семь ампер.
LILYTECH ZL-7801С (темп + влажность)От 2500 руб.Терморегулятор с контролем влажности и таймером.
Ringder RC-113М (пид-регулятор)От 1500 руб.Пид-регулятор, обладает точным регулированием.
XM-18 mode 3От 4500 руб.Есть дисплей. Это профессиональная модель, позволяющая отслеживать все показатели, построена на авр.
Ringder RC-112Е 30АОт 1200 руб.Могут быть применены для любых помещений для животных (клеток и террариумов). Может быть применен в летнем душе и других местах; Там, где необходим автономный контроль и контролирование температуры. Работает от стандартной сети в 220 Вольт.

к содержанию ↑

Где можно купить

Купить терморегулятор можно и самый обычный, китайский. Сделать это можно либо в наших магазинах, либо заказать его из Китая. Необходимо будет только настроить, ведь по умолчанию будут стоять заводские настройки. Главным положительным качеством китайского терморегулятора будет являтся его стоимость.

Купить такие терморегуляторы с датчиком температуры воздуха для инкубатора можно в интернет или в любых других оффлайн магазинах, список проверенных:

Магазины (Ссылки на магазины):
1Minifermer.ru (http://minifermer.ru/category_10.html)
2Tiu.ru (http://tiu.ru/Termoregulyator-dlya-inkubatora.html)
3Mirinkub.ru (http://mirinkub.ru/catalog/termoreguliatory)
4Алиэкспресс (https://ru.aliexpress.com/popular/thermostat-for-incubator.html)
Читайте также:  Полимерные фасадные панели для наружной отделки дома

Также можно поискать объявления по продаже: “продам терморегулятор для инкубатора”, или выставить свое: “куплю механический терморегулятор или электронный терморегулятор для инкубатора”, возможно кто-то продает самодельный терморегулятор для инкубатора. Но многие хотели бы узнать, а как сделать терморегулятор для инкубатора своими руками?

Как сделать терморегулятор для инкубатора своими руками

Самодельный терморегулятор на базе схемы К561ЛА7

Если уж делать инкубатор своими руками, то должна быть продумана вся схема инкубатора, в том числе и электросхема инкубатора, она может быть на базе какого-либо дешевого китайского терморегулятора, сделанная на основе купленного микроконтроллера. Пусть в нашем случае это будет К561ЛА7, с помощью нее можно собрать простой терморегулятор.

Допустим, что сам инкубатор уже готов, пусть он будет двухсекционный или односекционный, нам это не особо интересно, ведь помимо самого короба нужен гигрометр для инкубатора, нужно разобраться в том, как сделать терморегулятор для инкубатора своими руками и прикрутить его к инкубатору.

В основном используются самые простые схемы, потому как собирать большую схему трудно и это займет большое количество времени. Исходя из изложенного выше материала стало понятно, как работает терморегулятор для инкубатора, теперь нужно понять, как собрать на этой основе свой. Вот для инкубатора схема простого терморегулятора:

Схема на базе К561ЛА7

Эта схема терморегулятора для инкубатора на микроконтроллере К561ЛА7. Электронный терморегулятор для инкубатора такого типа обладает огромным количеством преимуществ – главным из них является цена.

Как сделать такую схему своими руками?

Схема является надёжной и простой. Большое количество транзисторов было заменено одной единственной микросхемой В схеме такого регулятора используются более надежные элементы, чем в аналогах.

Здесь для понижения напряжения установлен не конденсатор, а резистор, имеющий больший ресурс. Для подсоединения элементов нагрева используется схема последовательно-параллельного подключения. Микросхема более надежна, чем ее аналоги.

Все начинается с вышепоказанной схемы, при помощи нее собирается печатная плата.

Сначала открывается транзистор, при помощи импульсов, поступающих на него, после чего и тиристор.

Необходимо подобрать тиристор – это элемент схемы, который позволяет коммутировать большую нагрузку до 300 Ватт и более.

Нагрузка рассчитывается легко, нужно включить все лампы и замерить их потребление на максимальной мощности.

Нужно подбирать резисторы в соответствии с этой таблицей:

От них будет зависеть диапазон регулирования температур. Такая схема используется на протяжении нескольких лет и никогда еще не подводила, важно правильно подобрать все элементы и собрать плату в соответствии со схемой.

Использование обычного термостата в качестве регулятора

Если нужен датчик для инкубатора, но не хочется тратить деньги на его покупку, то можно использовать обычное термореле в качестве регулятора температуры внутри инкубатора. Использовать термостат для инкубатора достаточно просто, нужно лишь знать, как подключить его.

Необходимые материалы

Электрический термостат для инкубации можно добыть из самого обычного утюга или другого бытового прибора, в котором заложен принцип нагрева. Положительной стороной является то, что не нужна разработка электрической схемы.

Требуется лишь некоторая настройка термостата, а точнее его переделка под собственные нужды. Корпус термостата наполняется специальным составом – эфиром, который и будет в свою очередь передавать температуру на специальные контакты.

Сделать датчик для инкубатора можно используя реле регулятора и термостат. В данном случае будет использоваться это реле для ручной настройки температурных режимов инкубатора.

Если в устройстве будет использован термостат, инкубатор будет стоить действительно мало по сравнению с готовыми решениями, ведь купить термостатный набор, даже новый гораздо дешевле. Электрическая схема будет очень простой.

Как собирать?

Необходимо специальным образом подготовить прибор к работе в новых условиях. Первое, и основное, что нужно сделать – наполнить корпус термостата специальным эфиром и запаять его.

За счет того, что корпус наполнен эфиром, винт внутри устройства изменяет свое положение от малейших изменений температуры, тем самым смыкая и размыкая сеть. Получается, что в необходимых диапазонах происходит включение и отключение элемента нагрева.

Диапазоны температур регулируются специальным регулировочным винтом. Благодаря тому, что этот радиотехнический элемент не является редким, собрать такую схему сможет совершенно любой человек, даже практически не увлекающийся радиотехникой.

Терморегулятор своими руками

Видео

О том, как выглядит китайский электрический датчик для инкубатора рассказано в данном видео:

Делаем простую бормашину, практически из хлама

Бормашина или гравер — великое подспорье в «настольных» работах. В самом деле, в широкой продаже существует множество разнообразных насадок и их наборов, позволяющих резать различные материалы, зачищать, шлифовать, гравировать, опять же сверлить, всякие мелочи, часто в весьма труднодоступных местах. Бормашина может с успехом применяться в ювелирном деле, радиолюбительской практике, моделизме, мелкой слесарной и столярной работе, при работе со стеклом. Это действительно универсальный инструмент, здорово способствующий целостности пальцев и при мелкой работе, хорошо бы всегда иметь его наготове, под рукой.

Существуют граверы «широкого потребления» — напоминающие уменьшенную электродрель, 3-4 см толщиной. Коллекторный моторчик позволяет без особенных затей получить высокие обороты, цанговый зажим с набором из нескольких цанг, легок и прост. Несмотря на всего, несколько сотен ватт мощности, машинка в таком виде, не особенно удобна для работы, поэтому, в комплекты, часто входит гибкий вал и кронштейн для подвеса машинки.

Хрестоматийная сетевая мини-дрель — гравер, комплект.

Не смотря на добавки повышающие удобство, предпочтительной конструкцией бормашины, видится ювелирный вариант, изначально предназначенный для подвешивания и работы с гибким валом.

Включение и регулирование оборотов такой машинки осуществляется педалью, что также представляется весьма удобным.

Итак. Здесь рассмотрено изготовление самодельной бормашины подобной ювелирной, из готовых, узлов, преимущественно, от вышедшей из строя техники. Можно сказать — из накопившегося хлама. Специально приобретен, только гибкий вал — на любимом и родном китайском сайте. Поводом стал выход из строя фабричного гравера — мини-дрели. Его комплект гибкого вала не предполагал, а приобрести соответствующий не удалось. Приходилось орудовать «тушкой» — не особенно удобно, но выхода не было. Тем не менее, польза от машинки была несомненная, а при некоторых работах, инструмент был просто незаменим. От гравера, в наследство остался изрядный комплект инструмента.

Что потребовалось для работы:

От вышедшего из строя комплекта для электрификации швейной машинки, осталась педаль включения с проводами и разъемами. Педаль, после исследования, признана удовлетворительного исполнения — керамический выключатель — регулятор внутри, металлический корпус на который не страшно наступать, провода и разъемы достаточной мощности, даже ответный разъем нашелся.

Главным героем конструкции, является, конечно же мотор. Здесь, практически без изменений применяется «ручной» блендер — его металлический присоединяемый вал с ножами, заклинило в пластиковой втулке. Неремонтопригодная конструкция, не позволила восстановить узел, и кухонную штуковину пришлось комиссовать. Мотор блендера, тем не менее, остался, как Владимир Иллич — живее всех живых, и вполне подходящий для нашего применения — коллекторный быстроходный, 300 Вт, работает очень тихо для своего типа.

У присоединяемой пластиковой «ноги» отрезал верхнюю часть (длинная стрелочка), так, чтобы ручка имеющегося гибкого вала проходила через узкую его часть. Маленькой стрелочкой, показан заклинивший узел.

Существенной задачей, при изготовлении машины, является присоединение гибкого вала к мотору — обороты большие, требуется хорошая соосность и отсутствие эксцентриситета. Можно приобрести любого нужного диаметра соединительные муфты, здесь, однако, решил обойтись штатными деталями.

На оси мотора, укреплена переходная, для присоединения штатного блендерного ножа, втулка из прочного вязкого пластика. Снять ее простыми средствами не удалось, решено было оставить и применить. Внутренний диаметр втулки оказался чуть меньше присоединительного диаметра гибкого вала. Решено было несколько подточить его хвост, для плотной посадки во втулку. Стачивал лишнее на вращающемся валу, включив его наоборот — крутя за сторону с ручкой, держа в руках обратную сторону. В качестве привода, использовал сверлильный станок, настроенный на 3000 об/мин.

Нижнюю часть ручки следует зафиксировать, иначе, ее будет сильно болтать — вплоть до повреждения цанги. В сверлильном станке, зафиксировать ручку оказалось довольно просто — пропустил ее через центральное отверстие в опорной поверхности, диаметр его, оказался близким. В цанге гибкого вала, был установлен держатель абразивных дисков, его торчащую часть и зажал в сверлильный патрон.

Стачивать пришлось около 1 мм. Делать это вращающимся валом на неподвижном абразивном бруске оказалось малопродуктивно, пришлось вспомнить точение вращающихся железок УШМ. Дело было так — рядом со сверлильным станком, поудобнее положил маленькую «болгарку», так, чтобы придерживать ее одной рукой. Примерился, включил сверлильный станок, включил болгарку, и вращающимся валом, делал этакие скользящие движения по краю абразивного диска. Обязательно применение наушников и защитного щитка для глаз. Примерять почаще!

После подгонки диаметра вала, очень плотно посадил его во втулку — поверхность после болгарочного точения получается грубой и трения вполне хватало для нормальной работы, так и работал некоторое время. Для установки штифта аккуратненько просверлил втулку вместе с валом сверлом ø0,5мм и забил в отверстие нетолстый гвоздик. Вошел с натягом, выступающий край, плоскогубцами загнул на втулку.

Мотор с заштифтованой втулкой примерил в корпусе, убедился, что ничего нигде не цепляет. Можно попробовать включить. Да, перед сборкой корпуса, закоротил штатную кнопку — здесь пластиковый толкатель на корпусе прижимает гибкую бронзовую полоску к торчащей «перемычке» на платке сетевого фильтра. Залудил их и спаял насмерть — включение у нашей машины будет внешнее — педалью.

После сборки корпуса, нужно зафиксировать неподвижный конец гибкого вала, иначе, при работе мотора его сильно трясет, здесь, использовал штатную деталь блендера — кусок присоединяемой ноги с ножами.

Плотное соосное фиксирование, было обеспечено любимым материалом самодельщиков всех времен и народов (хотя у них там, наверное, это скотч). Даже вот синего цвета нашлась — классика. Уплотнял так — делал намотку несколько больше нужной — конус не «садился» на место, потом по одному слою отматывал, до плотной посадки пластиковой детали. Начинал с нижней. Получилось чудо как хорошо. Никакой вибрации.

Вилку от моторной части бормашины, решил приделать снизу, к рабочему столу, посему, дополнил ее текстолитовым основанием – к счастью, в вилке имелись крепежные отверстия, хорошо подошли винты М3.

— А где же ваша кроватка? — спросила Маша.
— В том-то и дело, — засмеялась Летучая Мышь, — что я обхожусь без всякой кроватки. Ах, какие чудесные сны снятся мне! Стоит только взобраться под самый потолок, уцепиться лапками вон за тот гвоздик и повиснуть там вниз головой. Всё снится вверх ногами. Ну что же ты стоишь? Полезай ко мне наверх, я уступаю тебе свой любимый гвоздик!

Галина Лебедева — Как Маша поссорилась с подушкой.

С подвешиванием мотора намучался — сделал и срезал несколько вариантов из самодельных жестяных хомутов — не понравилось. Простым и дешевым вариантом из металла, следует признать хомут с червячным винтовым зажимом. По бокам на него можно припаять проволочную петельку. Под хомут хорошо бы подложить нечто эластичное — листовую резинку или намотать материала всех времен и народов.

Хомута соответствующего диаметра под рукой не нашлось, чтобы машинка не валялась, сделал временное крепление из веревочек, но оно оказалось настолько простым и удачным, что оставил его насовсем. Фактически — это веревочное кольцо, на противоположных сторонах которого сформованы две самозатягивающихся петли. Для подвеса, к деревянному столбу рабочего стола-стеллажа привинчен саморез с широкой шляпкой, для листовых материалов. Под шляпку подложена увеличенная, «кузовная» шайба М6.

Получилось, что-то вроде ушка для подвешивания, вроде как у книжной полки на «реверсе». Машинка своим весом удерживает карабин в нужном положении, при необходимости мотор снять с гвоздика, его нужно приподнять, а карабин с шайбой, расстегнуть на манер, пуговицы в пальто — получилась дополнительная страховка от соскакивания. Веревочка, позволяет мотору беспрепятственно отклоняться, вслед за гибким валом.

Сетевую вилку блендера отрезал, конец провода разделал для подключения к вилке — сформовал на 3 мм сверле петельку, опаял, обжал плоскогубцами, удалил остатки флюса, а как же.

Разъем для присоединения педали, привинтил под столом, так, чтобы не пнуть его коленом, с правой стороны — чтобы педаль была под правой ногой, мне так показалось удобнее.

Получилось очень хорошо — хвост бормашины в «транспортном положении» свободно свисает, не доставая до пола, протянув руку, удается без труда достать ручку, нащупать ногой педаль под столом, тоже просто. Включив бормашинку в сеть перед работой, в любой момент можно ей воспользоваться, при этом она под рукой, но совершенно не занимает полезного места.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *