Простая сенсорная кнопка

Простейшее сенсорное устройство можно собрать на нескольких доступных деталях. Всего три транзистора, три резистора и один светодиод, вот и всё. Собирать схему можно даже навесным монтажом, всё работать будет.

Транзисторы любые NPN структуры: КТ315, КТ3102 или BC547 или любой другой. Резисторы 0,125-0,25 Ватт. Светодиод любого цвета, но лучше красный, так как падение напряжение падение у него минимальное. Питание 5 вольт, больше меньше можно и меньше тоже.

Все компоненты были компактно соединены между собой на миниатюрной печатной плате, которую можно сделать просто вырезав лишнюю медь резаком оставив таким способом остроугольные многоугольники. Детали, использованные для поверхностного монтажа, транзисторы в sot-26 npn, резисторы 0805, перемычки – кусочки провода, вместо них, если есть берите крупный 2512 резисторы с нулевым (условно) сопротивлением. Сенсорное устройство работает сразу, без настройки.

Объяснение работы схемы

Дотрагиваясь до базы транзистора Q3 вы наводками открываете его, вследствие чего через его КЭ и резистор 1 Мом течет ток, который открывает следующий полупроводник Q2, тот открываясь открывает Q3, который уже управляет светодиодом, открываясь через его КЭ течет ток, от минуса идет к катоду светодиода, а к аноду он уже подключен.

Резистор 220 Ом здесь “токоограничительный”, на нём падает лишнее напряжение, что защищает диод от деградирования кристалла и полного выхода из строя LED1

Ну вот горит светодиод по касанию пальца – и что? А вот то, что вместо этого светодиода ставим реле и теперь мы можем управлять почти любой нагрузкой, в зависимости от характеристик применяемого реле. Ставим мощную лампу накаливания, подключенную к сети, а в разрыв этой цепи контакты реле. Теперь при нажатии, а точнее касании сенсора лампа светит.

Также организовать включение/отключение нагрузки можно с помощью оптопары, если отсутствует реле, тогда также будет гальваническая развязка. Эта прекрасная вещь состоит из светодиода и фототранзистора, когда первый светит, то это открывает транзистор и через его КЭ может течь ток. Включаем нужные выводы оптрона в схему сенсора вместо светодиода LED1, а остальные два в разрыв источника питания и любой нагрузки. Эту деталь можно изъять из зарядок от телефона. Возьмите, к примеру, PC-17L1.

Чуть ниже вы видите дополнение к основной схеме, где показано как нужно подключать оптопару к схеме сенсора, также добавлен один транзистор, это нужно для того чтобы вы могли подключать весомую нагрузку, а не просто светодиоды на 20 mA.

Еще вместо реле и оптопары возможно применение двух npn транзисторов. Я так и сделал, схему вы видите. Работает это так: Q5 всегда должен быть открыт, через резистор 10 кОм, но через КЭ открытого Q4 на базу Q5 поступает “минус” и из-за этого он закрыт. Когда же вы касаетесь сенсора – то минус поступает через открытый Q1 на базу Q4 и закрывает его, теперь уж ничто не мешает Q5 оставаться открытым – нагрузка работает, а в моем случае мощный 1 Ватт светодиод ярко светит.

Так это выглядит в собранном состоянии.

Сенсор не имеет фиксации, дотронулись – светит, отпустили – не светит. Коль желаете сделать фиксацию – просто добавьте в схему триггер, например, на микросхеме КМ555ТМ2 или любой другой (можно даже на таймере 555 реализовать это). С добавление триггерной системы при касании к сенсору нагрузка будет включена до тех пор, пока не произойдет следующее касание или исчезнет питание схемы.

На практике это можно применить для быстрого включения и отключения освещения в комнате. Очень удобно, коснулся небольшого чувствительного участка, и комната освещена, второе касание отключит свет. Небольшое количество энергии будет теряться, но этим можно пренебречь.

Схема работает, но из-за своей простоты далеко не идеально. Если сенсор большой, то схема может срабатывать даже тогда, когда вы еще не дотронулись до него, также если вы рукой расчешете волосы возле датчика светодиод также может загореться. Выход из этой ситуации простой – миниатюрный сенсорный датчик.

Как уже говорилось – открытие Q3 происходит за счет наводок, видеть это можно на видео, светодиод светит не постоянно, а подмигивает с большой частотой, но это хорошо заметно при съёмки.

Яркость работающего диода не велика, если вы дотрагиваетесь только до базы третьего транзистора, но стоит вам коснуться еще и плюса питания, то ваше тело выступит в роле резистора и транзистор Q3 перейдет в насыщение. Но при таком раскладе для некоторых потеряется смысл сенсора.

Эта схема очень проста и предназначена лишь для понимания принципа работы электронных компонентов, применять в серьезных конструкциях не рекомендуется.

Введение

Во многих современных устройствах в качестве органов управления используются сенсорные кнопки. Например, у меня на кухне с помощью сенсорных кнопок включается и выключается варочная поверхность.
Сенсорные кнопки хороши тем, что для них не нужны отверстия в корпусе, и у них отсутствует механический износ, присущий традиционным кнопками. Кроме того конструкция сенсорной кнопки, если не считать электронную начинку, намного проще механической, ведь это обычная проводящая поверхность изолированная слоем диэлектрика, и ей можно придать практически любую конфигурацию.
В этой статье я расскажу о простой реализации сенсорной кнопки на микроконтроллере.

Принцип работы сенсорной кнопки

По сути, сенсорная кнопка – это сенсор, то есть какая-то проводящая поверхность, и контроллер, измеряющий его емкость (способность накапливать электрический заряд). При неизменных условиях внешней среды емкость сенсора не меняется. Но когда к нему подносится палец, его емкость увеличивается. По этому изменению контроллер “делает вывод”, что пользователь нажал на кнопку.
Емкость измеряется путем подсчета времени, которое требуется для ее заряда до определенного уровня напряжения. Это время зависит как от значения емкости, так и от величины зарядного тока, которая задается какой-то внешней цепью. В простейшем случае эту роль может выполнять резистор, подключенный одним концом к источнику питания, а другим к сенсору.

где Cs – емкость сенсора, Cf – емкости вносимые прикосновением пальца.

Поскольку емкость сенсора и ее изменения очень маленькие (единицы, десятки пикофарад), то время заряда тоже будет небольшим. Чтобы упростить измерение времени заряда, нужно увеличить его значение, а для этого необходимо заряжать емкость сенсора очень маленьким током (микроамперами).

Конфигурация сенсорной кнопки

От конфигурации (от его формы и размера) сенсора зависит его емкость. У меня в проекте использовался сенсор в виде вытравленной круглой контактной площадки диаметром 1 см. Также я пробовал использовать прямоугольные кусочки фольгированного текстолита разного размера. Чем больше площадь сенсора, тем больше его емкость и тем более чувствительную сенсорную кнопку можно сделать.
Чувствительную в том плане, что она будет в состоянии срабатывать через толстый слой диэлектрика. Вообще на эту тему лучше почитать атмеловские материалы, поскольку сейчас я об этом мало что могу сказать.

Схема

Схема, которую использовал я, представлена на рисунке выше.
Сенсор через резистор подключен к выводу микроконтроллера, который подтянут высокоомным резистором к плюсу питания. Первый резистор служит простейшей защитой от электростатики (ESD), а второй ограничивает зарядный ток.
В начальный момент вывод микроконтроллера работает в режиме выхода и на нем установлен уровень логического нуля. Емкость сенсора, если она имеет какой-то заряд, быстро разряжается на внутренние цепи микроконтроллера. Когда она разрядится вывод микроконтроллера переключится в режим входа с отключенным подтягивающим резистором и емкость сенсора начинает заряжаться через внешний высокоомный резистор. В это время программа опрашивает состояние вывода микроконтроллера и подсчитывает количество циклов опроса. Когда емкость зарядится до напряжения логической единицы, микроконтроллер зафиксирует это и сравнит состояние счетчика с каким-то пороговым значением. По результату этого сравнения микроконтроллер определяет поднесен ли к сенсору палец или нет.

Сам принцип думаю понятен, теперь можно посмотреть как это может выглядеть в Си коде. Для реализации одиночных сенсорных кнопок, я написал небольшой программный модуль – драйвер.

Чтобы добавить его в свой проект, нужно переписать заголовочный и сишный файл драйвера (sensor.c и sensor.h) в папку проекта, добавить сишный файл sensor.c к проекту внутри среды разработки и включить заголовочный файл драйвера sensor.h (с помощью директивы include) в свой файл, где будут использоваться функции драйвера.

Разберем как им пользоваться. Для хранения настроек сенсора используется структура данных sensor_t. В настройки сенсорной кнопки входит адрес порта, номер вывода в порте, пороговое значение и текущее состояние. Чтобы добавить к проекту сенсорную кнопку, нужно для начала создать переменную типа sensor_t.

Для инициализации используется функция SENS_Init(. ) которой нужно передать адрес переменной, хранящей настройки, номер вывода микроконтроллера, адрес используемого порта и пороговое значение срабатывания. Пороговое значение зависит от емкости сенсора (от его геометрии) и от зарядного тока. Сейчас значение можно определить только экспериментально, потом я хочу добавить функцию калибровки.

Опрос одной сенсорной кнопки выполняет функция SENS_Poll(. ), которой нужно передать адрес переменной типа sensor_t. Эта функция возвращает состояние сенсорной кнопки. Для всех возможных состояний сенсорной кнопки объявлен специальный тип данных sensor_state_t. Но функция опроса возвращает только два состояния SENS_PRESSED и SENS_NOT_PRESSED. Остальные состояния сделаны на будущее.

Функция SENS_Poll(. ) выполняет один цикл разряда- заряда сенсора.

Читайте также:  Первый ряд кирпича на фундамент

Для достоверного определения состояния сенсора, эту функцию лучше вызывать несколько раз. Так же как делается при опросе механических кнопок. Работу функции нежелательно прерывать прерываниями, иначе подсчет времени заряда будет некорректным. Частоту вызова функции опроса можно сделать такой же, как при работе с механическими кнопками. Функция не оптимальная, из-за того, что доступ к порту осуществляется через указатель. Но это позволяет упростить процедуру настройки сенсора, используя только адрес регистра PORTX, а адреса регистров DDRX и PINX вычисляются из него.
И последняя функция драйвера – это SENS_GetState(. ). Она просто возвращает текущее значение сенсорной кнопки.

Код самого тестового проекта очень простой. Инициализация выхода для светодиода, инициализация сенсорной кнопки и бесконечный опрос кнопки в цикле while(1). Никаких прерываний не используется. Частота работы микроконтроллера 9.6 МГц.

Сенсорные кнопки в Ардуино

В этой статье мы поговорим о сенсорных кнопках в ардуино. С помощью этого несложного и недорогого компонента можно создавать простые и очень эффектные проекты. Чаще всего такие кнопки используются для создания всевозможных удобных сенсорных интерфейсов, например в системах умного дома. Давайте узнаем, как можно подключать сенсорные кнопки к ардуино, напишем простой скетч и обязательно рассмотрим принцип их работы.

Сенсорная кнопка

Ни для кого не секрет, что прогресс не стоит на месте. Постоянно появляются новые технологии, совершенствуются старые. Сенсорные экраны появились совсем недавно (по меркам человечества), но уже прочно вошли в нашу повседневную жизнь. Телефоны, телевизоры, терминалы и прочие в большинстве своём используют «беcкнопочные» технологии. В кавычках это слово по той причине, что они всё-таки используют кнопки, только сенсорные. О них в данной статье как раз и пойдёт речь, а если точнее, о Touch module для Arduino.

Принцип работы сенсорных кнопок

Модули с сенсорными кнопками в большинстве своём используют проекционно-ёмкостные сенсорные экраны (https://ru.wikipedia.org/wiki/Сенсорный_экран). Если не вдаваться в пространственные объяснения их работы, для регистрации нажатия используется вычисление изменения ёмкости конденсатора (электрической цепи), при этом важной особенностью является возможность выставлять различную начальную ёмкость, в чём мы убедимся далее.

Человеческое тело обладает некоторой электрической емкостью, а следовательно, и невысоким реактивным сопротивлением для переменного электрического тока. Если прикоснуться пальцем либо каким-либо электропроводящим объектом, то через них потечет небольшой ток утечки от устройства. Специальный чип определяет эту утечку и подаёт сигнал о нажатии кнопки. Плюсами данной технологии являются: относительная долговечность, слабое влияние загрязнений и устойчивость к попаданию воды.

Сенсорные или механические кнопки

+ Сенсорная кнопка «ощущает» нажатие даже через небольшой слой неметаллического материала, что обеспечивает разнообразие в использовании её во всевозможных проектах.

+ Из предыдущего пункта вытекает и этот – возможность использовать сенсорную кнопку внутри корпуса повышает привлекательность проекта, что не влияет на функционал, но достаточно важно в повседневной жизни, чтобы не обращать на это внимание.

+ Стабильное функционирование, которое выражается отсутствием подвижных частей и частой калибровкой (о чём будет сказано ниже). Вам не придется беспокоиться о дребезге кнопок, возникающем при использовании механического собрата, что существенно облегчит жизнь начинающему ардуинщику. Поэтому ещё один плюс, пусть и не для всех – простота при работе.

Из минусов можно отметить следущее:

Обзор сенсорных кнопок

Прежде чем говорить непосредственно о работе с модулем, нужно определиться с тем, какую именно модель купить для использования. Рассмотрим несколько вариантов различных компаний:

1. Troyka touch sensor

Время отклика: 80мс (в режиме энергопотребления) и 10мс (в высокоскоростном режиме)

Максимальная толщина диэлектрика для нормальной работы: 4 мм

Размер: 25Х25 мм

Напряжение питания: 3–5 В

Цена: 390 рублей

2. Grove Touch Sensor

Время отклика: 220 мс и 80 мс

Максимальная толщина диэлектрика для нормальной работы: 2 мм

Размер: 20Х20 мм

Напряжение питания: 2–5 В

Цена: 229 рублей

3. TTP223B Arduino Digital Touch Sensor

Время отклика: 220 мс и 60 мс

Размер: 24Х24 мм

Напряжение питания: 2–5 В

Цена: 150 рублей

4. Keyestudio touch module

Размер: 30Х20 мм

Напряжение питания: 3.3–5 В

Цена: 270 рублей

Подключение сенсорной кнопки к Ардуино

Для использования сенсорной кнопки, как, впрочем, и всех остальных модулей и датчиков, её необходимо подключить к какой-либо плате arduino. В большинстве случаев используются стандартные модули с тремя контактами: питание, сигнал и земля. Их расположения от модели к модели меняются, на схеме они отображены согласно недавнему перечислению (сенсорная кнопка заменена переключателем по причине её отсутствии в Tincercad):

Важный момент: нужно помнить, сенсорной кнопке требуется в среднем полусекундная калибровка во время каждого запуска, что позволяет не беспокоиться о лишних шумах, которые, несомненно, возникали бы из-за различного положения кнопки в проектах. Поэтому не стоит сразу после запуска нажимать на кнопку, т.к. после этого наиболее вероятна некорректная работа устройства.

Сенсорный модуль, по своей сути аналогичен цифровой кнопке. Пока кнопка нажата, датчик отдаёт логическую единицу, а если нет, то логический ноль.

Проекты с использованием сенсорной кнопки

Начнём с простого: при нажатии на кнопку загорается встроенный светодиод.

Теперь усложним задачу: Нажатием на кнопку изменяется режим работы светодиода.

Заключение

В этой статье мы с вами рассмотрели принцип работы и схему подключения сенсорной кнопки к платам Arduino. С точки зрения программной модели никаких особенных отличий при работе с таким видом кнопок нет. Вы просто анализируете уровень входящего сигнала и принимаете решение о своем действии. С учетом того, что сами модули сенсорных кнопок достаточно дешевы и доступны в большом количестве интернет-магазинов, добавить такой интересный и современный интерфейс к своему ардуино-проекту на составит никакого труда.

Сенсорная кнопка общие сведения

Чувствительная поверхность типовой сенсорной кнопки генерирует электрическое поле реагирующее на изменение емкости при попадании в него биологического объекта, обладающего некоторой диэлектрической проницаемостью. При этом преобразователь настраивается на касание руки или пальца человека. При срабатываниях сенсорного выключателя запускается процесс переключения выходного ключа (построенного на транзисторе) и изменение значений выходных цепей.

Вокруг чувствительной поверхности большинства сенсорных кнопок находится кольцевой светоизлучатель, изменяющий цвет свечения при касании к сенсору. Среди СК существуют разновидности с внешним переключением световой индикации, позволяющие показывать текущее состояние схем управления. В центре чувствительной поверхности, под прозрачным колпачком можно разместить пиктограмму с подсказкой о назначении кнопки. Со стороны чувствительной поверхности в большинстве моделей СК с помощью специальных герметиков обеспечивается полная герметизация.

Сенсорные кнопки по функциональным вариантам можно разделить на следующие группы:

Простую радиолюбительскую самоделку можно собрать всего на нескольких доступных компонентах. В схеме использовано всего три биполярных транзистора, три сопротивления и один светодиод, (схему смотри в видеоинструкции). Собрать устройство можно даже с помощью навесного монтажа, всё должно нормально работать.

Транзисторы для самодельной констркции можно взять практически любые, в данном варианте NPN структуры: КТ315, КТ3102 или BC547. Сопротивления должны быть мощностью не менее 0,125 Ватт. Светодиод впринципе любого цвета, но лучше взять красный, т.к падение напряжение у них минимальное.

Касаясь пальцем до базы третьего транзистора мы открываем его благодаря наводкам, поэтому через него и огромное сопротивление номиналом 1 Мом протекает электрический ток, который открывает второй полупроводник, а через него уже срабатывает и третий биполярник, который управляет красным светодиодом. Сопротивление 220 Ом в этой цепочки является “токоограничительным”, на нём падает лишнее напряжение, что защищает диод от деградирования кристалла и полного выхода из строя

Если вместо светодиода в схему добавить реле, то через его контакты можно управлять почти любой нагрузкой, в зависимости от типа реле. Хотя более грамотным вариантом включение/отключение нагрузки является коммутация с помощью оптопары, в этом случае будет реализована гальваническая развязка.

Данная схема СК не имеет фиксации, дотронулись – нагрузка подключена, отпустили – она отключилась. Если нужно получить аналог СК с фиксацией можно дополнить в схему триггером, например, на отечественной микросборке КМ555ТМ2. В этом случае при касании к базе транзистора нагрузка будет включена до тех пор, пока не будет произведено следующее касание или не отключится питание.

На практике эту радиолюбительскую самоделку можно использовать для быстрого включения и отключения освещения, но из-за своей простоты схема далеко не идеальна и применять ее в серьезных конструкциях не советую.

Сенсорная кнопка своими руками – простой вариант на двух транзисторах

При прикосновении пальцем руки к выводам сенсора самодельного усилителя оказывается физическое влияние на нагрузку, т.к данная схема сенсорной самоделки способна усилить даже очень низкий ток, идущий через палец человека.

Т.к палец обладает некоторым сопротивлением, поэтому не получится им замкнуть низковольтную схему, чтобы заставить гореть светодиод. Это не говорит о том, что ток не протекает совсем, просто сила тока, идущая через тело человека в конкретном примере очень низкая. Но если его можно зафиксировать, а далее усилить, то без проблем можно использовать человеческий палец в схеме сенсорного переключателя, который непосредственно замыкает цепь со светодиодом или звуковым зуммером. Сенсорная кнопка на схеме выше, как раз и работает по этому принципу.

Читайте также:  Перфоратор Зубр - отзывы о работе и описание

Миниатюрная сборка TTP223 представляет собой сенсор нажатия и характеризуется током потребления и работой в приемлемом диапазоне напряжений (от 2 до 5.5 В)

Схема на рисунке выше может взаимодействовать практически с любым типом микроконтроллером или Arduino через разъем J1. На VCC рекомендуется подавать регулируемые 5 В, и выход OUT будет переключаться в “единичное№ логическое состояние, в тот момент, когда будет нажата кнопка. Светодиод LED1 – индикатор питания, а LED2 индикатор выхода. Чтобы он был задействован, нужно тоько поставить перемычку на JP1. В роли сенсорной пластины (на схеме TP) можно использовать небольшой лист металла в виде круга или квадрата нужного размера.

Сенсорный выключатель на микросхеме TTP223-BA6. В схеме использован модуль Arduino для управления мощной нагрузкой постоянного тока.

Сенсорная кнопка пример сборки на макетной плате.

Основу такой сенсорной кнопки образует пластинка из токопроводящего металла. Вместо индикаторной лампочки можно подключить обмотку реле. В схеме используются четыре транзистора, три биполярныха (Q2, Q3, Q4), и один полевой.

Самодельные сенсорные выключатели света — схема и принцип действия

«Умный дом» давно стал реальностью и набирает популярность. Полезные гаджеты и программируемые электроприборы облегчают быт человека. Сенсорный выключатель может быть частью комплекса или использоваться отдельно. Механическое нажатие больше не является единственным замыкающим сигналом. Работа устройства основана на электропроводимости человеческого тела или отражении инфракрасных лучей. Датчик реагирует на легкое прикосновение или движение.

  1. Конструкция «умного» выключателя
  2. Классификация переключателей
  3. Самостоятельная сборка сенсорных коммуникаторов
  4. Безопасность при монтаже

Конструкция «умного» выключателя

Понятие «сенсорный» трактуется по-разному в зависимости от источника. В широком смысле это аналог клавиши или кнопки питания, который реагируют на голос, движение, степень освещенности помещения и т. д. Он не требуют механического действия. В узком смысле — прибор работающий за счет энергоемкости человека. Конечность человека, приближаясь к чувствительной пластине, становится частью электроцепи, замыкает её. За счет действия специального элемента схемы (триггера) не происходит размыкания после отдаления раздражителя, стабильное состояние системы сохраняется. Отсутствие движущихся деталей исключает их поломку и облегчает влажную уборку поверхности.

Наружная часть — лицевая стеклянная или пластиковая панель и огнеупорный корпус. Квадратные, прямоугольные модели встречаются чаще круглых. Размер соответствует обычному клавишному выключателю, что позволяет использовать для монтажа стандартное гнездо. Функция крышки защитная и декоративная.

Чувствительный элемент — пластина с ёмкостными сенсорами или пара инфракрасный излучатель+приёмник, могут присутствовать дополнительные датчики. Задача сенсора уловить сигнал извне.

Силовая составляющая — печатная плата с SMD компонентами: блок питания, усилители, микроконтроллер, плата радиоканала, ключ, энергозависимая память.

Иногда в комплект входит дополнительный конденсатор, чтобы предотвратить фоновое свечение газоразрядных ламп в выключенном состоянии.

Классификация переключателей

Чтобы правильно выбрать коммуникатор, следует исходить из назначения помещения, количества и характеристик светильников. По параметру напряжению устройства бывают:

По количеству подключённых источников света применяют одинарные, двойные, тройные выключатели. Большее количество удобнее контролировать дистанционным пультом.

По виду ключа можно выделить:

Типы чувствительного элемента в бытовых переключателях:

Сенсорные переключатели расширяют возможности освещения, упрощают управление, позволяют экономить время и затраты электроэнергии. Они могут быть автономными или монтироваться в корпуса светильников: торшеров, настольных ламп, LED профилей.

Самостоятельная сборка сенсорных коммуникаторов

Главный минус «умных» выключателей — цена. Наличие базовых знаний электротехники поможет собрать самоделку. Домашние умельцы используют 3 основных варианта сборки.

Схема сенсорной кнопки на транзисторах самая простая. Для её осуществления потребуется макетная плата, на которой монтируются последовательно соединенные транзисторы КТ315 и электромеханическое реле, параллельно с которым обязательно нужно установить защитный диод. Сенсором послужит провод от базы транзистора, подключаемого к сети. Цепь можно усложнить, добавив перед реле оптрон и триггер (таймер NE555 или микросхема К561ТМ2). Такая модификация позволит сети фиксировать команду.

Инфракрасный сенсорный выключатель своими руками можно собрать, добавив в схему генератор прямоугольных импульсов. Для увеличения тока от генератора поможет инфракрасный мигающий светодиод. На микросхеме устанавливается временной интервал. Он определяет, через какое время после прекращения поступления сигнала выключится свет. При попадании отражения луча на фотоприёмник, счётчик К561ИЕ20 или CD4040 выдаст единицу, цепь замкнётся. При отсутствии сигнала на всех выводах логический ноль, не поступает напряжение, управляющий транзистор не пропускает ток.

Схема инфракрасного выключателя

Сенсорные выключатели промышленного производства можно доработать и расширить площадь чувствительности. Под крышкой нужно найти ёмкостный элемент и припаять к нему тонкий проводок. После чего проводник уложить увеличивающимся кольцами до заполнения всего периметра. Вернуть на место защитную панель.

Переключатели приспосабливаются не только под светильники, но и в качестве дверного звонка, раздвигателя штор и прочее. Все детали можно приобрести на радиорынках или китайских интернет-платформах по бюджетной цене.

Безопасность при монтаже

Перед установкой обязательно обесточить сеть, опустив рубильник защитного автомата в распределительном щитке. Сенсорные коммуникаторы монтируются без лицевой панели. Соблюдается правило полюсовки. Если в линии есть заземляющий провод, он подключается на промаркированный контакт. Концы многожильного кабеля опрессовывают или заслуживают, чтобы плотно зафиксировать и избежать перегрева.

Нельзя использовать приспособления с явными повреждениями или не рассчитанные на заданную нагрузку сети. Самодельные сенсорные выключатели света 220 В не всегда выдерживают — большинство домашних схем рассчитаны на низковольтных потребителей.

Нельзя начинать монтаж до ознакомления с инструкцией производителя.

Урок 3. TTP223 сенсорная кнопка схема подключения к Arduino

Сенсорные кнопки устроенны так, что они реагируют на изменение емкости. Изначально кнопка имеет определенную емкость, которая разная у каждой модели данных датчиков.

Так как тело человека обладает некоторой емкостью и небольшим реактивным сопротивлением. Если прикоснуться пальцем какого-нибудь проводника, то по нему потечет ток утечки. В сенсорных кнопка установлен чип (в нашем случае TTP223), который определяет данную утечку. При достижении определенного значения происходит срабатывания.

Технические характеристики TTP223

Подключим сенсорную кнопку TTP223 в Arduino

Как подключить кнопку к Arduino я рассказывал в Урок1 – Подключение кнопки и светодиода кплате Arduino

Для подключения сенсорной кнопки не нужно дополнительно ставить резистор потягивающий резистор. Все еже реализовано в самой кнопке. И контакт не будет висеть в воздухе.

Проверим будет или нет работать код из урока подключения кнопки к Arduino.

Как видим у нас все работает аналогично обычной кнопке.

При этом есть еще один бонус от использования сенсорной кнопки. Нам не нужно устранять дребезг кнопки. Если вы не знаете что это смотрите : Урок2. Нажатие кнопки без ложных срабатываний.Устраняем дребезг кнопки

Также данную сенсорную кнопку можно сконфигурирован для работы в одном из 4 режимов для этого нужно спаять перемычки А и В на плате:

A

B

Режимы

На время касания на выходе “1”

На время касания на выходе “0”

режим триггера, состояние выхода после касания – “0”

режим триггера, состояние выхода после касания – “1”


Как мы видим если спаять перемычки А и В. Мы сконфигурирован сенсорную кнопку как логический ключ. И не меняя программу мы можем включать светодиод и выключать при нажатии на сенсорную кнопку TTP223 .

Давайте подключим реле, вместо светодиода, не меняя программу.

Как видим, реле также отлично работает включается и выключается.

Если мы можем сконфигурировать кнопку так, что она будет работать как триггер. При нажатии подать положительный сигнал на выход. Для управления простыми устройствами такими как светодиод и реле. Из схемы можно убрать Arduino.

Для подачи напряжения буду использовать MICRO USB адаптер 5pin

Подключим светодиод к сенсорной кнопку . Как видим все работает.

Если же подключить реле к сенсорной кнопке TTP223 .

Оно не работает, потому, что кнопку можно подключить как логический ключ. Электродвигателя, реле и пр. (даже на 3-5 В) работать не будут. Сенсорная кнопка просто сгорит. Для примера я подключал параллельно 3 светодиода. И как видно из эксперимента начинаются ложные срабатывания. По техническим характеристикам даже 4 светодиода для данной кнопки много.

Но не обязательно ограничиваться реле. Можно подключать MOSSFET или твердотельное реле.

Проверку на работоспособность с разными материалами: пластик, картон, фанерой. Если на сенсорную кнопку положить материал не толще 2 мм. Кнопка работает отлично. Более 2 мм. Работает только с пластиком. Но это у меня. Возможно у вас будут другие результаты. Как у вас работают сенсорные кнопки пишите в комментарии.

Вывод: Сенсорная кнопка TTP223 имеет ряд преимуществ при использовании в проектах на Arduino , по сравнению с тактовой кнопкой. Но она не может быть использована в силовых цепях.

Читайте также:  Пылесос Samsung с контейнером для сбора пыли: пылесосы без мешка Samsung SC4520 и SC18M31B0HN, SC18M21A0S1 и SC8836, SC21K5170HG и другие

Подписывайтесь на мой канал на Youtube и вступайте в группы в

Вконтакте и Facebook.

Понравилась статья? Поделитесь ею с друзьями:

Гениальные приспособления для переноски тяжестей при ремонте

Сколько раз вам приходилось надрывать спину, поднимая тяжелый холодильник, платяной шкаф или строительные материалы на этаж без лифта? С подобной трудностью сталкивались практически все жители крупных городов. Долгое время переноска тяжелых, громоздких изделий была настоящим испытанием на выносливость. Люди, не обладающие хорошей физической подготовкой, были вынуждены обращаться за помощью к друзьям и соседям или нанимать бригаду грузчиков с крепким телосложением.

Сейчас эта проблема канула в лету, ведь появилось большое количество гениальных приспособлений, помогающих незатруднительно переносить тяжести во время ремонта. Главным преимуществом этих полезных устройств является то, что они подходят даже для женщин, а, главное — помогают сохранить здоровье, исключая повреждение спины и суставов.

Подобные приспособления можно приобрести в хозяйственном магазине, а многие интернет-магазины, занимающиеся продажей стройматериалов и/или такелажного оборудования готовы предложить собственное решение. Их стоимость невысока, благодаря чему они доступны для большинства потребителей. Мы подготовили небольшой, но очень полезный обзор, который поможет в выборе этих приспособлений.

Тележки

За свою богатую историю человечество изобрело немало гениальных приспособлений, существенно упрощающих жизнь, но тележка — одно из самых простых и эффективных. Зачем напрягать мускулы, перенося тяжелые мешки, бытовую технику, мебель или сантехнические изделия, если их можно без труда перевести при помощи этого полезного приспособления?

На сегодняшний день насчитывается несколько видов тележек. Каждый адаптирован под определенные условия эксплуатации и используется для перемещения различных грузов. Для удобства следует рассмотреть каждый тип, отмечая преимущества и недостатки.

Колесная тележка

Самая простая из всех, но именно в этом кроется ее гениальность. Конструкция предельно проста: к металлической раме прикрепляется ось с насаженными кольцами. Для большего удобства используются подшипники. Колеса оснащаются резиновой/полиамидной шиной, которая обеспечивает хорошее сцепление с поверхностью, не скользит, не портит покрытие.

Колесные тележки оснащаются ручкой для удобного передвижения. Их конструкция прорабатывается таким образом, что нагрузки распределяются равномерно по всему корпусу, предотвращая физические деформации.

Подобные тележки используются для перемещения грузов по территории склада, а также на предприятии. Их можно применять на стройплощадке.

Тележки рычаги

Отличное приспособление для грузчиков, обеспечивающее экономию сил, времени. Данные тележки подходят для перемещения всевозможных грузов, например:

Такая тележка отлично подходит для быстрого перемещения груза на небольшую дистанцию, но не обладает дополнительными фиксаторами и упорами, а потому редко применяется при работе с большим количеством габаритных грузов.

Тележки подставки

Простое и удобное приспособление, предназначенное для перемещения грузов по ровной поверхности. Конструкция представляет собой металлическую раму с несколькими колесами, расположенными по разным концам. Каждое шасси имеет поворотную платформу, благодаря чему подставка способна перемещаться в любом направлении.

Лестничная тележка

Напоминает стандартную колесную тележку, но имеет важное преимущество — специальные трехколесные опоры, вращающиеся вокруг оси. Во время перемещения груза по ровной поверхности нагрузка приходится на два колеса с каждой стороны, а третье располагается сверху. Однако, при упоре о ступеньки ось проворачивается, перекидывая третье колесо на возвышенность. В результате данная тележка позволяет поднимать тяжелые грузы на этаж, не прилагая больших усилий.

Такелажные ремни

Это, пожалуй, самое гениальное приспособление из всех, представленных в данном рейтинге. Такелажные ремни имеют несколько важнейших особенностей:

Такелажные ремни бывают различных типов. В продаже можно найти модели для предплечий и плеч. Стоит рассмотреть особенности каждой модели.

На предплечье

Как следует из названия, данные ремни накидываются на предплечья. Благодаря этому отпадает необходимость удерживать груз пальцами и кистями. Недостатком служит то, что задействованными остаются бицепсы и ряд других мышц, а потому данные ремни больше подходят для мужчин крепкого телосложения.

На плечи

Данная модель обладает схожей конструкцией, но петли накидываются на плечи, при этом перевязь фиксируется на торсе. В результате руки не участвуют в подъеме тяжестей (ими достаточно придерживать груз при переноске). Вся нагрузка приходится на ноги. Спина тоже остается незадействованной, что исключает повреждение поясничного отдела и позвоночного столба. В результате данные ремни подходят даже для женщин.

Транспортировочные ручки для плит гипсокартона, фанеры, ДСП, OSB

Гениальность данных приспособлений невозможно переоценить, ведь главным действующим лицом является сама физика. Транспортировочные ручки сконструированы таким образом, что при поднятии груза смещается центр тяжести, благодаря чему зацепы конструкции надежно удерживают листовые материалы, не позволяя им выскальзывать из рук.

Ручки идеально подходят для перемещения всевозможных листовых материалов:

Эти приспособления уберегают руки от повреждения, не позволяя занозить кожу о края деревянных материалов или порезать ее об острые грани листового стекла. Они обеспечивают не только захват, но и переноску.

Существуют фрикционные модели транспортировочных ручек, которые отлично подходят для работы с особо тяжелыми и габаритными грузами. Благодаря своей простоте эти приспособления нередко используются в профессиональной среде.

Станки для грузчиков

Станки представляют собой сложное устройство, оснащенное металлическим каркасом для установки/удержания груза, а также перевязью, ремнями и креплениями, фиксирующимися на спине грузчика. Благодаря продуманной конструкции станки подходят для перемещения грузов массой до 50 килограммов, а благодаря ровному каркасу они исключают нагрузку на позвоночник и поясничный отдел. При переноске тяжелых грузов работает весь торс, а основная нагрузка приходится на плечи и ноги. Благодаря специальной системе ремней станки легко адаптируются под телосложение работника, позволяя работать с максимальным комфортом.

Экзоскелеты

Инновационное изобретение, предназначенное для строителей и складских работников. Его минус — высокая стоимость, поскольку экзоскелет представляет собой сложное техническое устройство. Оно управляется человеком, повторяя движение силуэта, но при этом принимает на себя основные нагрузки. В результате данное приспособление не только поддерживает спину, исключая травмирование, но и многократно увеличивает мышечную силу, позволяя работать с тяжелыми грузами даже неподготовленного человека. Питание обеспечивается за счет встроенных аккумуляторных батарей.

Домкраты и рохли

Здесь речь идет о специальных приспособлениях, используемых по большей части на предприятиях и в крупных складских комплексах. Конструкция домкрата известна любому автомобилисту. Благодаря специальной конструкции это устройство может поднимать тяжелые грузы, удерживая их на весу.

Профессиональные домкраты подверглись ряду технических изменений, за счет чего они применяются для перемещения тяжелых грузов. Они помогают удерживать различные материалы на небольшой высоте, но этого достаточно для передвижения.

Рохля — это вилочная тележка, гибрид колесной тележки и домкрата. По виду они напоминают рабочие вилы автопогрузчиков, а название произошло от наименования фирмы Rocla, которая одной из первых начала поставлять тележки в СССР.

Это ручное приспособление, используемое по большей части для поднятия и перемещения груженых поддонов и бочек. Благодаря металлическому корпусу и специальным шасси они выдерживают большой вес, а для управления при перемещении груза используется рукоять, соединенная с механизмом домкрата.

Транспортировочные наборы

Здесь речь идет о сверхпрочных подставках различных размеров и форм, которые без труда соединяются с рукоятями. Они подходят для двух категорий потребителей:

Невысокая стоимость делает транспортировочные наборы доступными для широкого круга покупателей, и к тому же они не требуют специальных навыков обращения.

Струбцина для переноски кирпичей и камня

Это простое приспособление представляет собой металлическую раму, позволяющую надежно удерживать штучные изделия и строительные материалы. При помощи струбцины можно переносить:

Фактически, струбцина представляет собой рукоять, позволяющую объединить несколько кирпичей в единый блок, при этом она прочно фиксирует их, не позволяя выпадать в ходе переноски.

Присоска для переноски стекла

Последнее, но не по значимости, приспособление будет незаменимым для тех, кто постоянно работает с листовым стеклом. Присоска обеспечивает прочную фиксацию за счет эффекта вакуума, а благодаря эластичной поверхности она не повреждает стекло, не оставляет царапин и сколов. Существуют как механические, так и электронные присоски. Вторые используются по большей части в профессиональной сфере.

На этом обзор гениальных приспособлений для переноски тяжелых грузов подошел к концу. Теперь, готовившись к переезду, ремонту или строительным работам, вы сможете подобрать нужный вариант и сохранить спину здоровой. Берегите себя, и смело пользуйтесь этими необычайно полезными приспособлениями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *