Светодиодная лампа с цоколем G23: модернизация старой настольной лампы

Приветствую всех посетителей ресурса!

Сегодня в небольшом обзоре будем модернизировать старую настольную лампу. В качестве источника света в ней применяется энергосберегающая U-образная лампа с цоколем G23. Такие лампы доступны в продаже и сейчас, но вместо нее установил более современный, светодиодный вариант с тем же цоколем и температурой свечения 4000 К.

Кому интересно, предлагаю ознакомиться подробнее.

Итак, есть в хозяйстве старая настольная лампа на штативе с «изменяемой геометрией».

Наэкранная, конечно штука хорошая, но у нее другие задачи. А вот лампа на штативе позволяет настраивать освещение как угодно в зависимости от конкретной задачи. Обычно использовал ее, когда что-то паял, мастерил и т.д. Нужно поднял, нужно осветил предмет труда вблизи, нужно открутил струбцину и передвинул в другое место. Удобно.

Обычно такая лампа потребляет 11 Ватт, моя, оказалось, «кушает» 14, но и напряжение в сети в момент измерений было 248 Вольт.

Нельзя сказать, что лампа очень яркая или тусклая, вполне нормально освещает стол с высоты предыдущего снимка.

Однако есть у этой энергосберегающей лампы два существенных недостатка – это использование ртути в баллоне и жуткое мерцание. Первое опасно в случае, если колба разобьется, второе крайне утомительно и в долгосрочной перспективе опасно для зрения.

Можно, конечно старый светильник полностью заменить новым того же формата со светодиодным источником света, но выйдет дороже, чем просто заменить непосредственно энергосберегающую лампу на светодиодную. Второй вариант — при наличии времени и энтузиазма можно смастерить замену из светодиодной ленты и импульсного блока питания, но это все «костыли», тем более что по затратам выйдет приблизительно одинаково.

Поэтому заказал светодиодную лампу со следующими характеристиками:

Напряжение питания 85-265 Вольт 50/60 Гц

Температура свечения 4000 К

Индекс цветопередачи Rа 80

Заказ доставили за две недели в потрепанной коробке, но лампа цела, без повреждений, царапин и прочего. На коробке никаких картинок, лишь характеристики.

В ассортименте магазина лампы мощностью 5, 7, 9 и 12 Вт теплого, белого и холодного белого оттенка свечения. В зависимости от мощности меняются лишь габариты лампы, а точнее ее длина.

Для информативности иллюстрация с типами цоколей. Наш вариант – G23.

Габаритами лампы практически одинаковые, новая длиннее лишь на 5 мм, что не совершенно не критично. Светофильтр сделан из матового пластика для равномерной засветки.

На верхней стороне видим ребра алюминиевого радиатора, составляющего большую часть всей лампы, и характеристики.

Сравниваем цоколи. Длина, ширина, расстояние между контактами совпадают. Немного отличаются площадки за выступами, но это допустимо для данного вида цоколя – лампы взаимозаменяемы.

Cбоку также наблюдаем массивную часть радиатора для лучшего отведения тепла.

Торец лампы закрыт пластиковой заглушкой, которую можно без особых усилий снять.

Теперь можно легко сдвинуть рассеиватель/светофильтр и увидеть 72 светодиода. Они одной температуры свечения, а не как во многих других конструкциях холодного оттенка чередуются со светодиодами теплого оттенка. Сначала были сомнения, что вместо естественного белого прислали теплый белый, но в последствии все оказалось в порядке – как и заказывал, оттенок свечения естественный.

На модуле имеются надписи, а сам он посажен на радиатор через термопасту.

Перевод настольного светильника с энергосберегающей лампы на светодиодную сводится не сосем к простой замене одного источника света на другой. Требуется удалить из схемы дроссель, который прячется в коробке в основании штатива. Операция не сложная, справится любой желающий. Единственное, о чем нужно помнить это о технике безопасности – не забудьте отключить лампу от сети.

Спаиваем, изолируем провода (синяя изолента обязательна)). Дроссель выбрасывать не стал, спрятал назад в коробку.

Затрат времени на 10 минут и в результате получаем осовремененную лампу без мерцания с естественным свечением. В плафон новая лампа встала без проблем. Можно было удалить отражатель, но оставил.

Теперь устанавливаем на ту же высоту над столом и проводим не хитрые измерения.

Потребляемая мощность оказалась на пару Ватт ниже заявленной (весьма ожидаемо) – 10 Ватт против 12.

Но светит лампа гораздо ярче прежней – 1784 Люкс против 836.

Карандашный тест на мерцание лампа прошла без проблем, глаза даже через длительное время не устают. Можно читать, паять, работать с мелкими деталями – света много, он яркий и естественного оттенка. Теперь стало на много комфортнее, а двухваттное несоответствие мощности с лихвой компенсируется высокой яркостью. По цветопередаче также претензий нет.

Приблизительно за 30 долларов можно купить такой же новый светильник с LED источником света, но при наличии старого, исключив из цепи питания дроссель и заменив саму лампу, его проще и дешевле модернизировать.

Переделка люминесцентного светильника в светодиодный

Переделка вышедшей из строя люминесцентной лампы в светодиодную — очень правильная мысль. Диоды при сравнимой потребляемой мощности светят ярче и служат дольше. Способ переделки люминесцентного светильника в светодиодный зависит от типа самого светильника.

Типы конструкций светильников для ламп дневного света:

Как переделать линейный светильник дневного света в светодиодный

Если у вас есть светильник с линейным корпусом, переделать его в LED вариант не составит труда. Самый постой способ – использовать диодные ленты. Существуют даже варианты для подключения к сети 220В без специальных драйверов питания. Особенность их – все светодиоды подключены последовательно и выход одного из них приведет в неработоспособности всего сегмента.

Схема включения очень простая:

Характеристики светодиодной ленты на 220В:

По яркости свечения метр такой ленты будет соответствовать обыкновенной лампочке накаливания на 100Вт.

Основной недостаток таких лент – высокочастотное мерцание. Оно практически не воспринимается зрением, но вызывает быстрое утомление при выполнении точных работ либо чтении. Частично проблему решает установка высоковольтного конденсатора перед диодным мостом из расчёта 60-70 мкФ х 500В на 10Вт мощности ленты.

Как переделать настольный люминесцентный светильник в светодиодный

Переделать такой светильник малой кровью, смонтировав туда ленту на 220В не получится. При минимальной длине сегмента 50см в корпус она не поместится, а к изгибам её конструкция относится очень негативно. В такой светильник можно установить несколько полос диодных лент рассчитанных на напряжение 12В.

Оптимальный вариант конструкции в этом случае такой:

Используем четыре полосы по 25 см с разводкой на 12В. В итоге, яркость будет на уровне 75Вт лампы накаливания.

Источник питания для компактной лампы

Метр ленты потребляет около 15Вт и рассчитан на силу тока 1,2А. Для такой мощности покупать 30-ватный специализированный драйвер не имеет смысла. Можно воспользоваться готовым фабричным решением. Этот миниатюрный блок питания с суммарной мощностью до 20Вт. Вот только габариты 79 х 30 х 24 мм не позволят разместиться ему в корпусе светильника.

Можно собрать компактный импульсный источник питания своими руками по следующей схеме. Конденсатор 20-30 мкФ х 400В, стабилитрон на 9-12В.

Как переделать цокольные лампы дневного света в светодиодные

Вариантов модификации такой лампочки в светодиодную два:

Переделка под светодиодную ленту

Материалы для переделки и схема подключения:

Подробная видеоинструкция по переделке:

Для компактных настольных решений переделать люминесцентный светильник под светодиодную лампу можно следующим образом. В отличие от предыдущего варианта такая конструкция даёт направленный световой поток и идеально подходит для освещения рабочего места. Диоды можно использовать на 0,5 либо 1Вт. Тогда итоговая яркость будет 350Лм либо 700 Лм соответственно.

Для питания конструкции можно использовать любой блок питания на 12В 2А, если соединить все светодиоды параллельно, либо зарядное устройства от мобильного телефона на 5В 2А при соединении в три параллельные линии.

Драйверы питания энергосберегающих лампочек для светодиодов не подходят, поэтому смело выпаиваем из них провода, идущие к цоколю, а сами платы отправляем на последующую переработку.

Светодиодная жизнь старой настольной лампы – Переделка LED Светодиоды Лампа

Светодиодная жизнь старой настольной лампы » Переделка LED » Бытовая техника » Обзоры » Лучшее 2016

Светодиодная жизнь старой настольной лампы

Категории: Бытовая техника, Обзоры

Предлагаем вам инструкцию как переделать старые настольные лампы. Для экономии электроэнергии в них можно поставить простую светодиодную лампу с нужным цоколем. Но было решено переделать лампы капитально.

В переделке участвовали две настольные лампы, разных поколений.

Категории и теги: Бытовая техника, Обзоры » Переделка, LED, Светодиоды, Лампа, Настольная.

Разбираем старую настольную лампу.

Вынимаем старую лампу и отпаиваем ее патрон, на ее место помещается новая сборка.

Между светодиодом и металлическим абажуром настольной лампы, нужно нанести термопасту, для лучшего отвода тепла, если абажур не металлический то нужно светодиоды разместить на алюминиевой пластине.

Старый драйвер выпаиваем оставляя шнур питания с выключателем и на его место припаиваем новый

Для питания светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы, представляющие собой преобразователи стабилизирующие ток, а не напряжение на своём выходе.

Но для питания светодиодов можно использовать и обычные 12 вольтовые блоки питания, конечно проконтролировав амперметром поступающий ток.

Можно также запитать светодиоды переделанным балластом от энергосберегающих ламп. В наличии было несколько таких неисправных ламп, у которых сгорела нить накала в колбе. Как правило, у таких ламп преобразователь напряжения исправен, и его можно использовать в качестве импульсного блока питания или драйвера светодиода.

Схема переделки:

Берём плату от 20 Вт экономки и устанавливаем перемычки в цепи розжига лампы.

На самый габаритный дроссель, не разбирая его, наматываем 18 витков эмалированного провода, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В нашем случае блок выдал 9,7В. Подключенный светодиод через амперметр, показал проходящий через светодиод ток в 0,83А. У данного 10 ватного светодиода рабочий ток равен 900мА, но ток было решено уменьшить чтобы увеличить ресурс. Диодный мост на плате можно разместить навесным способом.

Читайте также:  Размеры бруса для строительства дома – оптимальная длина и сечение

Больше никаких переделок не требуется. Если планируется запитать светодиод мощностью более 20 Вт, требуется взять преобразователь от более мощной лампы.

Плату питания и диодный мост установлен в корпус настольной лампы.

Также можно приклеить в плафон лампы порезанную на куски, светодиодную ленту как на фото.

Для переделки вам понадобятся такие или похожие светодиоды, мощностью около 10Вт:

Ищите их в ближайших магазинах или в инете например на aliexpress.com или ebay.com по слову LED, ориентировочная цена 0.5$ за светодиод, если брать сразу 10 штук то может и ещё дешевле.

Теги: Переделка, LED, Светодиоды, Лампа, Настольная

Новое по теме: Бытовая техника, Обзоры

Как переделать светильник дневного света в светодиодный — 2 легких способа.

Если старый советский светильник с люминесцентными лампами дневного света типа ЛБ-40, ЛБ-80 вышел из строя, или вам надоело менять в нем стартера, утилизировать сами лампы (а просто так выкидывать их в мусорку уже давно нельзя), то его с легкостью можно переделать в светодиодный.

Самое главное, что у люминесцентных и светодиодных ламп одинаковые цоколи – G13. Никакая модернизация корпуса в отличие от других видов штырьковых контактов не потребуется.

При этом вы получите:

Правда, в более современных моделях, уже используется электронный балласт. В них повысился КПД (90% и более), исчез шум, но расход энергии и световой поток остались на прежнем уровне.

Например, новые модели таких ЛПО и ЛВО часто используются для потолков Armstrong. Вот примерное сравнение их эффективности:

Еще одно преимущество светодиодных – есть модели рассчитанные на напряжение питания от 85В до 265В. Для люминесцентного нужно 220В или близко к этому.

На что нужно обратить внимание при переделке простых люминесцентных светильников в светодиодные? Прежде всего на его конструкцию.

Если у вас простой светильник старого советского образца со стартерами и обыкновенным (не электронным ПРА) дросселем, то фактически и модернизировать ничего не надо.

Если стартер из схемы не убрать, то при замене лампы ЛБ на светодиодную, можно создать короткое замыкание.

Дроссель же демонтировать не обязательно. У светодиодной, потребляемый ток будет в пределах 0.12А-0.16А, а у балласта рабочий ток в таких старых светильниках 0.37А-0.43А, в зависимости от мощности. Фактически он будет выполнять роль обыкновенной перемычки.

После всей переделки светильник у вас остается тот же самый. На потолке не нужно менять крепление, а сгоревшие лампы не придется более утилизировать и искать специальные контейнеры для них.

Для таких ламп не нужны отдельные драйвера и блоки питания, так как они уже идут встроенными внутри корпуса.

А у люминесцентной они соединены нитью накала. Когда она раскаляется, происходит зажигание паров ртути.

В моделях с электронным ПРА нить накала не используется и промежуток между контактами пробивается импульсом высокого напряжения.

Чем больше их длина, тем ярче свечение.

Если же у вас модель более современная, без стартера, с электронным дросселем ЭПРА (электронный пускорегулирующий аппарат), то здесь придется немного повозиться с изменением схемы.

Что находится внутри светильника до переделки:

Затем отсоединяете питающие провода. Для этого может понадобиться отвертка с узким жалом.

Можно данные проводки и просто перекусить пассатижами.

Схема подключения двух ламп отличается, на светодиодной все выполнено гораздо проще:

Главная задача которую нужно решить – это подать 220В на разные концы лампы. То есть, фазу на один вывод (например правый), а ноль на другой (левый).

Ранее говорилось, что у светодиодной лампы оба штырьковых контакта внутри цоколя, соединены между собой перемычкой. Поэтому здесь нельзя как в люминесцентной, подать между ними 220В.

Чтобы убедиться в этом, воспользуйтесь мультиметром. Установите его в режим измерения сопротивления, и касаясь измерительными щупами двух выводов произведите замер.

На табло должны высветиться такие же значения, как и при замыкании щупов между собой, т.е. нулевые или близкие к нему (с учетом сопротивления самих щупов).

У лампы дневного света, между двумя выводами с каждой стороны, есть сопротивление нити накала, которая после подачи напряжения 220V через нее, разогревается и ”запускает” лампу.

Далее всю работу можно проделать двумя способами:

Самый простой способ это без демонтажа, но придется докупить пару зажимов Wago.
Выкусываете вообще все провода подходящие к патрону на расстоянии 10-15мм или более. Далее заводите их в один и тот же зажим Ваго.

Тоже самое проделываете с другой стороной светильника. Если у клеммника wago недостаточно контактов, придется использовать 2 шт.

После этого, все что остается – подать в зажим на одну сторону фазу, а на другую ноль.

Нет Ваго, просто скручиваете провода под колпачок СИЗ. При таком методе, вам не нужно разбираться с существующей схемой, с перемычками, лезть в контакты патронов и т.п.

Другой метод более скрупулезный, зато не требует никаких лишних затрат.

Снимаете боковые крышки со светильника. Делать это нужно осторожно, т.к. в современных изделиях защелки сделаны из хрупкой и ломкой пластмассы.

После чего, можно демонтировать контактные патроны. Внутри них расположены два контакта, которые изолированы друг от друга.

Такие патроны могут быть нескольких разновидностей:

Все они одинаково подходят для ламп с цоколем G13. Внутри них могут быть пружинки.

В первую очередь они нужны не для лучшего контакта, а для того, чтобы лампа не выпадала из него. Плюс за счет пружин, идет некоторая компенсация размера длины. Так как с точность до миллиметра, изготовить одинаковыми лампы не всегда получается.

К каждому патрону подходят два провода питания. Чаще всего, они крепятся путем защелкивания в специальных без винтовых контактах.

Проворачиваете их по часовой и против часовой стрелки, и приложив усилие вытаскиваете наружу один из них.

Как уже говорилось выше, контакты внутри разъема изолированы друг от друга. И демонтируя один из проводков, вы фактически оставляете не удел одно контактное гнездо.

Весь ток теперь будет течь через другой контакт. Конечно, все будет работать и на одном, но если вы делаете светильник для себя, имеет смысл немного усовершенствовать конструкцию, поставив перемычку.

Благодаря ей, вам не придется ловить контакт, проворачивая светодиодную лампу по сторонам. Двойной разъем обеспечит надежное соединение.

Перемычку можно сделать из лишних проводов питания самой лампы, которые у вас обязательно останутся в результате переделки.

Тестером проверяете, что после монтажа перемычки, между ранее изолированными разъемами есть цепь. То же самое проделываете со вторым втычным контактом на другой стороне светильника.

Главное проследить, чтобы оставшийся провод питания был уже не фазным, а нулевым. Остальное выкусываете.

Если светильник у вас двухламповый, лучше всего к каждому разъему подавать напряжение отдельными проводниками.

При монтаже простой перемычки между двух и более патронов, конструкция будет иметь существенный недостаток.

Вторая лампа будет светиться, только при условии, что первая установлена на свое место. Уберете ее, и тут же погаснет и другая.

Питающие проводники должны сходиться на клеммную колодку, где поочередно у вас будет подключены:

Как заменить в настольной лампе
U-образную люминесцентную лампу светодиодами

Современная малогабаритная настольная лампа, которая изображена на фотографии, с установленным в ней источнике света в виде люминесцентной U-образной компактной лампы, проработала несколько лет и отказала.

Со слов хозяина настольной лампы, в последнее время, когда лампа еще работала, из ее основания шел неприятный запах.

Вскрытие основания лампы сразу показало, в чем заключалась неисправность. В одной из обмоток балластного устройства обгорела изоляция. Очевидно, от перегрева или плохого качества изоляции намоточного провода катушки, произошло короткое замыкание между витками, которое и спровоцировало нагрев обмотки до высокой температуры и окончательный выход балластного устройства из строя.

Возиться с перемоткой катушек не хотелось, а готового балластного устройства для замены найти практически невозможно, тем более, что его тип был неизвестен. Поэтому решил переделать настольную лампу на современный лад – установить вместо люминесцентной лампы светодиоды, а балластное устройство заменить электронным драйвером, тем более, что для такой переделки все было под рукой.

Замена люминесцентной лампы светодиодами

В наличии имелась длинная и узкая печатная плата со светодиодами от линейной светодиодной лампы.

Драйвер в ней перегорел и от нагрева расплавил корпус-трубку. Поэтому ремонту линейная лампа не подлежала, а диоды были исправны. По ширине планка со светодиодами как раз хорошо входила в отражатель настольной лампы.

Также имелась светодиодная лампа, в которой половина светодиодов была неисправна, и ремонтировать ее не имело смысла. Плата драйвера была исправна.

Поэтому было принято решение применить для переделки настольной лампы планку со светодиодами от линейной светодиодной лампы и драйвер от светодиодной лампы Е27.

Люминесцентная U-образная трубка в отражателе удерживалась за счет пластикового фиксатора и цоколя. Для определения необходимой длины светодиодной планки лампу с цоколем необходимо было удалить. Для того чтобы добраться до цоколя люминесцентной лампы пришлось открутить один саморез и снять фиксирующую планку.

Дополнительного крепления цоколь не имел, и для его извлечения осталось только отпаять два питающих провода. Провода были многожильные достаточного сечения, поэтому их решил оставить для подачи питающего напряжения на светодиоды.

После примерки и определения длины светодиодной планки с помощью лобзика был отпилен кусок требуемой длины. Светодиоды на планке размещены по диагонали, поэтому и пришлось пилить лобзиком.

Линия распила прошла в нужном месте, печатные дорожки, соединяющие светодиоды остались неповрежденными.

Для крепления светодиодной планки были использованы имеющиеся крепежные элементы отражателя настольной лампы. Люминесцентная лампа фиксировалась с помощью привинченной саморезоми к отражателю пластмассовой скобкой, а фиксирующая крышка была привинчена к пластмассовой стойке.

В планке между светодиодов было просверлено отверстие диаметром 3 мм под саморез и сделана выборка для крепления к стойке. После проверки совпадения крепежного отверстия с отверстием в короткой стойке можно приступать к закреплению планки со светодиодами в отражателе.

Читайте также:  Поделки из скорлупы грецкого ореха своими руками

Перед окончательной установкой планки со светодиодами в отражатель необходимо к контактным площадкам на ней припаять провода. Один из проводов был короткий, и его пришлось нарастить методом пайки и на место соединения надеть изолирующий кембрик. Так как провода были одного цвета, то после прозвонки мультиметром положительный провод был промаркирован с двух сторон надетыми колечками белого кембрика.

Я использовал готовую печатную плату со светодиодами. Но подобную плату несложно сделать и своими руками. При этом если применить современные одноваттные светодиоды, например LED-SMD5730-1, то достаточно распаять всего 3-5 шт. Можно также в качестве источника света вместо отдельных светодиодов использовать светодиодную ленту, наклеенную на металлическую полоску. Подбирать драйвер в каждом случае придется индивидуально.

На фотографии хорошо видно как закреплена печатная плата с установленными на ней светодиодами в отражателе настольной лампы. Для того чтобы планка была удалена от дна отражателя у длинной стойки (фото слева) на нее был надет кембрик длиной, равной высоте правой короткой стойки.

Перед закреплением светодиодов в отражателе, они были проверены подключением к драйверу. Был также измерен ток потребления. На фотографии изображен отражатель с установленными в нем светодиодами. Осталось прикрепить фиксирующую крышку, предварительно надев на выступающую стойку отрезок кембрика на всю ее длину. Таким образом, зажатый между двумя отрезками трубок надежно будет закреплен и левый край планки.

Выбор и электрическая схема драйвера

Для подачи питающего напряжения на светодиоды был применен бестрансформаторный драйвер от неисправной светодиодной лампы Е27, собранный по классической электрической принципиальной схеме.

На фотографии Вы видите распайку проводов к драйверу. Провода черного цвета, идущие от светодиодной платы, припаяны к положительному и отрицательному выходам драйвера. С помощью синего и желтого проводов к драйверу подается питающее напряжение 220 В.

Электрическая принципиальная схема драйвера приведена выше. Конденсатор С1 емкостью 0,8 мкФ ограничивает ток до 57 мА. R1 и R3 ограничивают броски тока из-за заряда конденсаторов в момент включения драйвера в сеть. Диодный мост VD1-VD4 выпрямляет напряжение, а электролитический конденсатор С2 сглаживает пульсации, чтобы светодиоды не мигали с частотой сети. В схеме драйвера еще установлен и предохранительный элемент, скорее всего это бареттер, он сглаживает броски тока и одновременно является предохранителем. Если понадобится уменьшить или увеличить ток питания светодиодов, то необходимо будет соответственно уменьшить или увеличить емкость конденсатора С1. Увеличить С1 можно даже не выпаивая из платы, припаяв параллельно к его выводам дополнительный конденсатор. При параллельном подключении конденсаторов суммарная емкость равна сумме их емкостей, то есть увеличится и ток тоже увеличится.

Постоянный ток, обеспечивающий оптимальную яркость свечения используемых светодиодов, составляет 20 мА. Светодиоды на печатной плате соединены параллельно по три штуки. Следовательно, ток, необходимый для их работы по такой схеме включения должен составить 60 мА. Как известно, для долговременной работы светодиодов лучше, чтобы протекающий ток был чуть меньше номинального. Поэтому обеспечивающий драйвером ток величиной 57 мА вполне удовлетворяет этому требованию.

Светодиодов на планке оказалось 60 штук. Измеренное падение напряжения на каждой триаде светодиодов составило 2,48 В. Таким образом мощность, потребляемая светодиодами составила 2,48 В × 20 шт. × 0,057 А = 2,8 Вт, что эквивалентно мощности свечения лампочки накаливания 25 Вт. Создаваемая освещенность настольной лампы вполне достаточна при использовании ее в качестве дежурного света, ночного светильника, подсветки клавиатуры компьютера или чтения электронной книги.

Вес драйвера незначительный и поэтому я не стал его крепить жестко, просто прихватил гибким пластиковым хомутом за одну из стоек крепления половинок основания. В качестве выключателя был задействован штатный выключатель настольной лампы. Для завершения переделки настольной лампы осталось только скрепить между собой тремя саморезами ее основание, и можно будет приступать к проведению ходовых испытаний.

Испытания настольной лампы показали хороший результат. Благодаря возможности наклона стойки и поворота отражателя в двух плоскостях настольная лампа позволяет направить световой поток в нужную зону освещения.

Переделка позволила не только восстановить работоспособность настольной лампы без затрат, но и превратила морально устаревшую настольную лампу в современный светильник с низким энергопотреблением.

Как заменить в светильниках люминесцентные лампы на светодиодные

LED-источники обладают массой преимуществ, поэтому можно смело предположить, что спустя еще одно десятилетие практически в каждом доме будут установлены светодиодные лампы вместо люминесцентных.

Если уже сейчас в вашу голову закралась подобная мысль, то поспешите ее реализовать. При сравнении двух лампочек одинаковой мощности диодные элементы будут существенно опережать оппонента: они намного ярче, долговечность выше.

Светодиодные лампы для замены люминесцентных

Однако процесс перехода на LED-источники может быть болезненным, поскольку не всегда есть возможность полностью заменить светильник. Поэтому иногда приходится переделывать уже имеющийся люминесцентный. Лампы дневного света (второе название «люминесцентные») могут быть линейными и компактными.

Преимущества от замены люминесцентных лампочек на светодиоды

Переход на идентичные светодиодные источники позволит достичь экономии электроэнергии в 2-3 раза. Причем это актуально для любой лампочки независимо от ее форм-фактора. Не забывайте, что современные технологии постоянно совершенствуются, так и в случае с LED человечество еще не достигло максимальных высот развития. В будущем такие изделия будут еще более эффективными.

Чтобы прочувствовать существенную выгоду при переходе с люминесцентных ламп на светодиоды, подсчитаем разницу мощностей для квартиры. Допустим, используется 10 ламп, а средняя продолжительность работы каждой составляет 3 часа в сутки. Перемножим эти значения с 30 днями и получим 90 часов в месяц. Пусть каждая лампа потребляет 50 Вт/ч, значит ежемесячный расход составляет 45 кВт. Если стоимость 1 кВт равна 10 руб., то плата за электроэнергию при использовании одной такой лампы составит 450 руб.

При переходе на светодиоды и желании сохранить освещенность помещений на прежнем уровне, достаточно взять LED-источники на 20 Вт. Таким образом, в месяц на освещение будет уходить 18 кВт, а плата за электроэнергию составит 180 руб. Это в 2,5 раза меньше, но на деле данный показатель может быть значительно выше.

Расчет эффективности замены люминесцентных ламп на светодиодные

В таблице ниже представлены показатели мощности для люминесцентных и светодиодных ламп с идентичным значением светового потока.

Люминесцентные, ВтСветодиодные, ВтСветовой поток, Лм
5-72-3250
10-134-5400
15-166-10700
18-2010-12900
25-3012-151200
40-5018-201800
60-8025-302500

Исходя из данной схемы, становится понятно, что люминесцентную лампу на 36 Вт можно заменить светодиодной на 18 Вт. Переход на светодиодные источники света рационален не только экономически, но и с точки зрения эффективности. Чтобы понять разницу, давайте перечислим технико-эксплуатационные параметры для каждой лампочки.

Преимущества LED-ламп над люминесцентными

  1. Срок службы приблизительно равен 2000 часам. Конкретное значение напрямую связано с количеством включений/выключений, но для данной величины оно не должно превышать 2000 циклов.
  2. Поскольку световой поток является рассеянным, то есть расходится в разных направлениях, для повышения освещенности требуется применение отражателей.
  3. После включения требуется несколько секунд, чтобы выйти на рабочую яркость.
  4. Из-за использования пускорегулирующего устройства появляются помехи в сети.
  5. Со временем, независимо от количества включений/выключений, защитный слой из люминофора деградирует, что приводит к уменьшению светового потока на 25-30%.
  6. Предъявляются особые требования при эксплуатации и утилизации, поскольку принцип действия связан с ртутными парами, заключенными в стеклянной колбе.
  1. Срок службы превышает 10 000 часов независимо от циклов включения-выключения.
  2. Направленный световой поток, отсутствие необходимости в применении отражателей.
  3. Моментальный выход на рабочую яркость при включении лампы.
  4. Вместо пускорегулирующего устройства используется драйвер, что исключает создание помех в сети.
  5. Максимальное снижение яркости на фоне более продолжительного срока эксплуатации составляет 10%.
  6. Уменьшенное потребление электроэнергии.
  7. Экологичность и безопасность.

Как переделать люминесцентный светильник под светодиодные лампы

Обязательно нужно удалить стартер, использующийся в качестве пускорегулирующего устройства для включения люминесцентной лампы. Поскольку светодиоды функционируют напрямую от промышленной сети, то нет необходимости использовать пускорегулирующий блок. В противном случае при установке светодиода вы вызовете короткое замыкание. По габаритам сложностей возникнуть не должно, поскольку всегда можно найти светодиод, размеры которого соответствуют лампе дневного света. Таким образом, вам не придется изменять конструкцию потолочного светильника. Любые корректировки связаны исключительно с внутренней электрической схемой.

Для перехода на светодиоды достаточно выполнить следующие действия:

  1. Избавиться от стартера.
  2. Замкнуть и извлечь балласт.
  3. Отключить конденсатор.

Схема подключения светодиодных ламп Т8 к содержанию ↑

Конструкция светодиодов

Светодиод представляет собой небольшую прозрачную трубку из качественной пластмассы. Внутрь помещается драйвер и гетинаксовая планка с впаянными LED-диодами. С этим и связано отсутствие необходимости во внешней пускорегулирующей аппаратуре. Достаточно подключить лампу к сети 220 В.

Светодиодные изделия имеют стандартный цоколь G13, при этом внутри при помощи медной проволоки колбы происходит соединение между штырями лампы. Благодаря этому электричество можно подавать по любому штырьку.

Светодиодная трубка может иметь длину 600 или 1500 мм, а мощность обычно находится в пределах 9-25 Вт. Свет от источника может быть теплый (желтый) или холодный (белый). Светодиодные лампы выпускаются в разной форме. Наиболее распространенными являются конструкции с классическим корпусом на 5 мм. В верхней части находится линза, в нижней — отражатель, в корпусе — кристалл, который представляет собой излучатель света (начинает светиться, когда через него проходит электроэнергия).

Конструкция линейной светодиодной лампы

С точки зрения электрической схемы конструкция светодиода проста. У него есть два выхода — анод и катод. Алюминиевый отражатель размещен на катоде и внешне напоминает чашку. Основным элементом изделия является полупроводниковый монокристалл с p-n-переходом. При рассмотрении этого компонента вы обнаружите куб, размеры которого приблизительно равны 0,3х0,3х0,25 мм.

Монокристалл через проволочную перемычку подключен к аноду. Корпус производится из полимерных материалов, является прозрачным и в какой-то степени представляет собой фокусирующую линзу. Вместе с отражателем корпус задает угол излучения и направленность света.

Светильники с электромагнитным ПРА

Более старые, советские люминесцентные светильники помимо стартера были оснащены электромагнитной пускорегулирующей аппаратурой. В данном случае существенных изменений вносить не придется. Удалите из прибора стартер, установите светодиод соответствующего размера и продолжайте пользоваться изделием.

Совершенно нет необходимости в удалении дросселя. Величина потребляемого тока составит порядка 0,15 А, поэтому такая деталь будет выполнять функции перемычки. В остальном конструкция светильника остается неизменной.

Переделка светильника с электронным ПРА

В современных люминесцентных светильниках пускорегулирующая аппаратура является электронной. С другой стороны, внутри нет стартера. При таком раскладе придется вносить в электрическую схему более существенные изменения.

Читайте также:  Погружной насос Aquario ASP (4) для скважины

Как выглядит современный люминесцентный осветительный прибор до преобразования в светильник на светодиодах:

Электронный балласт для ламп дневного света

И вот первое отличие: следует незамедлительно удалить дроссель, что облегчит вес конструкции в целом. При помощи отвертки или пассатижей открутите все крепления, удалите питающую проводку. К концам трубки следует подвести источник тока напряжением 220 В: один конец — фаза, другой — «ноль».

Одной из особенностей светодиода является жесткое соединение штырьков на цоколе, в то время как люминесцентные трубки для соединения используют стандартную нить накала, разжигающую ртутные пары.

Однако современные приборы с электронной пускорегулирующей аппаратурой лишены нити накала, а между двумя контактами формируется импульс напряжением. Подать 220 В между жесткосоединенными контактами трудно. Чтобы гарантировать, что подача будет корректной, воспользуйтесь мультиметром. Выберите на нем режим замера сопротивления, затем коснитесь обоих контактов, чтобы получить нужное значение. Итоговая величина должна быть равна или максимально приближена к «0».

Схема подключения ЭПРА

Между выводами LED-светильников есть нить накала с определенным сопротивлением. Когда будет подано напряжение, она начинает накаляться, а лампа — светить. Впоследствии при подключении светодиодной лампы используйте один из двух методов:

к содержанию ↑

Без демонтажа

Данный вариант реализовать проще по нескольким причинам: не имеет значения использующаяся схема подключения, не нужно создавать перемычки, забираться в середину патрона и изменять контакты. Избавьтесь от проводов, которые ведут к патрону, купите зажимы Wago и заведите их туда. То же самое нужно выполнить на противоположной стороне светильника. На одну сторону клеммников должна поступать фаза, на другую — «ноль». Вместо зажимов можно воспользоваться скруткой проводов, а затем спрятать их в колпачки СИЗ.

Подключение патронов ламп через клеммники Wago к содержанию ↑

С демонтажем патронов и установкой перемычек

Алгоритм изменения светильника в данном случае выглядит следующим образом:

  1. Удалите боковые крышки осветительного прибора.
  2. Избавьтесь от патронов с изолированными контактами. В патроне есть пружинки, подходящие для крепления лампочки.
  3. К патрону подведены два провода питания. Они закреплены в контактах, не имеют винтов. Крутить их следует по или против часовой стрелки. Приложите усилие и достаньте один провод.
  4. Поскольку контакты изолированы, выполнив демонтаж одного провода, вы гарантируете прохождение тока лишь через одно гнездо. Это никак не повлияет на функциональность осветительного прибора, однако в идеале следует установить перемычку, усовершенствовав его.
  5. Используя перемычку, вы избавите себя от необходимости вылавливания контакта во время поворота светодиодной трубки.
  6. Перемычку можно создать из оставшихся проводов питания от светильника.
  7. Установив перемычку, нужно проверить цепь между изолированными частями. Такие же действия нужно проделать с обеих сторон светильника.
  8. Проверьте, куда уходит оставшийся провод питания. На него должен подаваться «ноль». Другие части вырвите при помощи пассатижей.

Люминесцентные светильники с двумя и более лампами

При изменении люминесцентного светильника с двумя или большим количеством ламп, требуется использовать разные проводники, чтобы подать напряжение на каждый разъем. Если устанавливать перемычку между патронами, то конструкция получит несколько недостатков. При монтаже первой трубки не в своем гнезде вторая попросту не будет светиться.

К клеммной колодке следует поочередно подсоединить фазу, «ноль» и «землю». Соедините проводники для подачи напряжения. Перед креплением прибора к потолку убедитесь в работоспособности лампы. Подав напряжение, при отсутствии света отрегулируйте контакты.

Переделка люминесцентного светильника

Светодиодный источник света является направленным, однако в цоколь заложена возможность вращения на 35 градусов, что пригодится при регулировке. В дешевых китайских изделиях подобная функция может отсутствовать. Тогда придется передвигаться крепление самого патрона.

Разновидности ламп

Цоколи светодиодных ламп со штырьками обозначаются латинской буквой G. Следующие цифры указывают на расстояние между центральными частями штырьков. При наличии числового значения вторая цифра указывает на диаметр окружности, к которой подключаются штырьки.

К примеру, цоколь G13 с расстоянием 13 мм может быть подсоединен к светильникам «Армстронг», ЛПО и ЛВО. Нередко вместо маркировки G13 используется обозначение T8.

Лампа светодиодная т8 с цоколем g13 к содержанию ↑

Замена люминесцентных ламп на светодиодные: инструкция

Любые работы по замене люминесцентных ламп на светодиодные нужно выполнять с соблюдением всех правил безопасности. Алгоритм выглядит следующим образом:

  1. Отключите защитный автомат. При помощи отвертки с индикатором или мультиметра убедитесь в отсутствии напряжения.
  2. Удалите крышку со светильника, чтобы увидеть содержимое.
  3. Избавьтесь от конденсатора, стартера и/или дросселя.
  4. Отделите провода, подключенные к клеммам на патроне. Соедините их с нулевым и фазным кабелями.
  5. Избавьтесь или заизолируйте оставшуюся, ненужную проводку.
  6. Остается подключить светодиодную лампу.

к содержанию ↑

Работа с патроном

Поскольку световой поток люминесцентных ламп распространяется во все стороны (на 360 градусов), то не имеет значения, в какую сторону будет направлен источник и его патрон. Однако при переходе на светодиодные изделия, характеризующиеся направленным светом, может произойти ситуация, когда потолочный светильник светит не вниз, а в сторону. Наиболее простым решением в таких ситуациях может стать применение цоколей поворотного типа, которые можно развернуть на 90 градусов.

Светодиодная лампа с поворотным цоколем

Сегодня переход на светодиодные источники света как никогда актуален. Даже самые дешевые лампы данного типа потребляют как минимум на 50% меньше электроэнергии, имеют более продолжительный срок эксплуатации, экологически и электрически безопасны. Если вы не разбираетесь в основных принципах электрики, безусловно, будет намного проще приобрести готовый светодиодный светильник, который полностью окупит себя уже через один год.

Доработка настольной лампы

Переход на светодиодные светильники даёт ощутимую экономию потребления электроэнергии. О том, как самостоятельно переделать обычный настольный светильник в светодиодный, рассказывает наш автор Олег Михайлов.

У себя дома я уже давно оснастил самодельными светодиодами все осветительные приборы, и лишь в кабинете оставался единственный светильник с компактной люминесцентной лампой на рабочем столе. Так как светильник использовался довольно интенсивно, лампы для него с цоколем G23 мощностью 11 Вт приходилось менять с периодичностью раз в год-полтора, несмотря на уважаемую фирму-производителя Osram. К тому же за полгода до перегорания лампа начинала подмигивать с частотой сети, что ужасно утомляло. Включалась лампа не сразу, а с задержкой, требующейся на разогрев стартера (как и обычная люминесцентная трубка), который находится в цоколе лампы. Ещё из недостатков моего светильника надо отметить слишком тяжёлую вилку-дроссель, которая постоянно вываливалась из евророзетки и к тому же сама была потребителем электроэнергии. В общем, когда в очередной раз подошёл срок менять лампу, я задумался о переделке светильника на светодиодный.

Разобрал прибор очень просто: пришлось отвернуть всего три винтика. В плафоне оказалось достаточно места для того, чтобы разместить драйвер и радиатор со светодиодами. Посчитав, что мощности светодиодной лампы в 6 Вт хватит для освещения рабочего места, я начал подбирать комплектующие.

Драйвера для 6 одноваттных светодиодов я не нашёл, поэтому пришлось использовать драйвер для двухваттных светодиодов и, соответственно, три трёхваттных светодиода (двухваттных светодиодов не существует). Они будут работать в облегчённом режиме — двухваттном (заодно будут меньше греться), световой поток составит 200-220 лм на диод. Схема подключения представлена на рисунке.

Для охлаждения трёх светодиодов, работающих в двухваттном режиме, необходим радиатор площадью минимум 180 см2 (30 см2 на отвод 1 Вт тепла). Для этой цели я выбрал радиатор HS 172-30 размерами 150 * 30 х 13 мм. Площадь его поверхности составляет 310 см2, что почти в 2 раза превышает минимально допустимую. На радиаторе наметил точки крепления радиаторных пластин Star и крепления радиатора к корпусу свето-отражателя лампы, после чего на сверлильном станке в этих точках просверлил два отверстия 0 2,5 мм и шесть 0 2 мм, а затем в них нарезал резьбу М3 и М2,5 соответственно.

Для размещения драйвера подошёл «родной» патрон G23, у которого бор-машинкой выфрезеровал одно из гнёзд, предназначенных для подключения лампы. В результате не пришлось заботиться об изолировании драйвера от радиатора и светоотражателя.

Радиатор установил в плафон и закрепил двумя винтами М3 через отверстия, просверленные в отражателе.

К сожалению, термоклей у меня закончился. Потому светодиоды припаял на платы Star с использованием термопасты КПТ-8 (зато не пришлось ждать, пока высохнет термоклей). Платы со светодиодами закрепил на радиатор винтами М2,5 также через термопасту.

Далее распаял светодиоды последовательно проводом МГТФ сечением 0,12 мм2 и подпаял выходные провода драйвера к светоизлучающему модулю с соблюдением полярности. Поставил патрон с драйвером на место и подпаял входные провода к «родному» выключателю. Все соединения заизолировал термоусадочной трубкой. Затем закрыл крышку плафона и, вздохнув с облегчением, отрезал надоевшую вилку-дрос-сель. Взамен поставил обыкновенную двухполюсную вилку.

Пробное включение лампы показало, что я напрасно боялся за переход светодиод — плата, где вместо термоклея была использована термопаста: температурный режим после часа работы был нормальным. Измерения проводил на отрицательном выводе светодиода (точка, наиболее подверженная нагреву) и в точке контакта радиатора с платой. Переделка лампы завершена.

Хочу отметить, что в работе были использованы по максимуму «родные» детали светильника, куплены же — на копейку! И переделка заняла от силы несколько часов. А служить эта лампа будет ещё и моим внукам.

Экономический эффект

Комплектующие

• Драйвер HG-2234 с характеристика­ми: U вx = 90-240 VAC; Uвых =6-12VDC;lвых = 460-500 мА; размеры — 25 х 17 х 17 мм.
• Три светодиода 3HPD-3 (I норм/макс = 700/1 000 мА; Uпр. = 2,9-3,6 В; Фv = 250 – 270 лм при номинальном токе; 201/2 = 120 градусов; Т = 3 060 К; чип 45 х 45 mil).
• Три радиаторных пластины Star Ø 20 мм и толщиной 1,6 мм.
• Радиатор HS 172-30 размерами 150 x 30 x 13 мм.

4. Радиатор HS 172-30 вполне годится для охлаждения трёх светодиодов.
5. Грамотная разметка радиатора.
6. Отверстия М2,5 — для крепления платы Star, отверстие М3 — для крепления радиатора к отражателю.

7. Часть патрона выфрезерована бормашинкой.
8. . чтобы установить здесь драйвер.
9. Радиатор свободно поместился на отражателе плафона.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *